These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 6780347)

  • 1. Non-specific biosynthesis of gammacerane derivatives by a cell-free system from the protozoon Tetrahymena pyriformis. Conformations of squalene, (3S)-squalene epoxide and (3R)-squalene epoxide during the cyclization.
    Bouvier P; Berger Y; Rohmer M; Ourisson G
    Eur J Biochem; 1980 Dec; 112(3):549-56. PubMed ID: 6780347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus.
    Rohmer M; Bouvier P; Ourisson G
    Eur J Biochem; 1980 Dec; 112(3):557-60. PubMed ID: 6780348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-specific biosynthesis of hopane triterpenes by a cell-free system from Acetobacter pasteurianum.
    Rohmer M; Anding C; Ourisson G
    Eur J Biochem; 1980 Dec; 112(3):541-7. PubMed ID: 7460938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereochemical investigations of the Tetrahymena cyclase, a model system for euphane/tirucallane biosynthesis.
    Giner JL; Feng J
    Org Biomol Chem; 2017 Mar; 15(13):2823-2830. PubMed ID: 28287229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of 1,2-hydride shifts in the formation of euph-7-ene by the squalene-tetrahymanol cyclase of Tetrahymena pyriformis.
    Giner JL; Rocchetti S; Neunlist S; Rohmer M; Arigoni D
    Chem Commun (Camb); 2005 Jun; (24):3089-91. PubMed ID: 15959594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic cyclization of all-trans pentaprenyl and hexaprenyl methyl ethers by a cell-free system from the protozoon Tetrahymena pyriformis. The biosynthesis of scalarane and polycyclohexaprenyl derivatives.
    Renoux JM; Rohmer M
    Eur J Biochem; 1986 Feb; 155(1):125-32. PubMed ID: 3081345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the biosynthesis of tetrahymanol in Tetrahymena pyriformis. The mechanism of inhibition by cholesterol.
    Beedle AS; Munday KA; Wilton DC
    Biochem J; 1974 Jul; 142(1):57-64. PubMed ID: 4140721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyterpenoids as cholesterol and tetrahymanol surrogates in the ciliate Tetrahymena pyriformis.
    Raederstorff D; Rohmer M
    Biochim Biophys Acta; 1988 May; 960(2):190-9. PubMed ID: 3130105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of epoxydammaranes by the enzymatic reactions of (3R)- and (3S)-2,3-squalene diols and those of 2,3:22,23-dioxidosqualenes with recombinant squalene cyclase and the mechanistic insight into the polycyclization reactions.
    Hoshino T; Yonemura Y; Abe T; Sugino Y
    Org Biomol Chem; 2007 Mar; 5(5):792-801. PubMed ID: 17315066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alicyclobacillus acidocaldarius Squalene-Hopene Cyclase: The Critical Role of Steric Bulk at Ala306 and the First Enzymatic Synthesis of Epoxydammarane from 2,3-Oxidosqualene.
    Ideno N; Umeyama S; Watanabe T; Nakajima M; Sato T; Hoshino T
    Chembiochem; 2018 Sep; 19(17):1873-1886. PubMed ID: 29911308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of squalene synthetase in the inhibition of tetrahymanol biosynthesis by cholesterol in Tetrahymena pyriformis.
    Warburg CF; Wakeel M; Wilton DC
    Lipids; 1982 Mar; 17(3):230-4. PubMed ID: 6806556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3R,S)-2,3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring.
    Hoshino T; Nakano S; Kondo T; Sato T; Miyoshi A
    Org Biomol Chem; 2004 May; 2(10):1456-70. PubMed ID: 15136801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution.
    Dang T; Prestwich GD
    Chem Biol; 2000 Aug; 7(8):643-9. PubMed ID: 11048954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of the Gly600 residue of Alicyclobacillus acidocaldarius squalene cyclase alters the substrate specificity into that of the eukaryotic-type cyclase specific to (3S)-2,3-oxidosqualene.
    Hoshino T; Shimizu K; Sato T
    Angew Chem Int Ed Engl; 2004 Dec; 43(48):6700-3. PubMed ID: 15593147
    [No Abstract]   [Full Text] [Related]  

  • 15. β-Amyrin Biosynthesis: The Methyl-30 Group of (3S)-2,3-Oxidosqualene Is More Critical to Its Correct Folding To Generate the Pentacyclic Scaffold than the Methyl-24 Group.
    Hoshino T; Miyahara Y; Hanaoka M; Takahashi K; Kaneko I
    Chemistry; 2015 Oct; 21(44):15769-84. PubMed ID: 26351084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic cyclizations of squalene analogs with threo- and erythro-diols at the 6,7- or 10,11-positions by recombinant squalene cyclase. Trapping of carbocation intermediates and mechanistic insights into the product and substrate specificities.
    Abe T; Hoshino T
    Org Biomol Chem; 2005 Sep; 3(17):3127-39. PubMed ID: 16106294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanisms of squalene cyclization to tetra- and pentacyclic triterpenes (author's transl)].
    Sliwowski J
    Postepy Biochem; 1974; 20(3):281-302. PubMed ID: 4849151
    [No Abstract]   [Full Text] [Related]  

  • 18. Cyclization cascade of the C33-bisnorheptaprenoid catalyzed by recombinant squalene cyclase.
    Cheng J; Hoshino T
    Org Biomol Chem; 2009 Apr; 7(8):1689-99. PubMed ID: 19343258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural diversity of the triterpenic hydrocarbons from the bacterium Zymomonas mobilis: the signature of defective squalene cyclization by the squalene/hopene cyclase.
    Douka E; Koukkou A; Drainas C; Grosdemange-Billiard C; Rohmer M
    FEMS Microbiol Lett; 2001 May; 199(2):247-51. PubMed ID: 11377875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of excess mevalonic acid on ubiquinone and tetrahymanol biosynthesis in Tetrahymena pyriformis.
    Wilton DC
    Biochem J; 1985 Jul; 229(2):551-3. PubMed ID: 3929773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.