These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 6780385)
1. Active transport of peptides in bacteria. Payne JW; Nisbet TM Biochem Soc Trans; 1980 Dec; 8(6):683-5. PubMed ID: 6780385 [No Abstract] [Full Text] [Related]
2. Peptide transport in bacteria: methods, mutants and energy coupling. Payne JW Biochem Soc Trans; 1983 Dec; 11(6):794-8. PubMed ID: 6421638 [No Abstract] [Full Text] [Related]
3. [Inorganic ion transport in bacteria]. Gershanovich VN Usp Sovrem Biol; 1979; 87(1):61-77. PubMed ID: 107670 [No Abstract] [Full Text] [Related]
4. Chemiosmotic interpretation of active transport in bacteria. Harold FM Ann N Y Acad Sci; 1974 Feb; 227():297-311. PubMed ID: 4275121 [No Abstract] [Full Text] [Related]
5. Genetics of the bacterial phosphoenolpyruvate: glycose phosphotransferase system. Cordaro C Annu Rev Genet; 1976; 10():341-59. PubMed ID: 189682 [No Abstract] [Full Text] [Related]
6. Characterization of two peptide-transport systems in Streptococcus faecalis. Nisbet TM; Payne JW Biochem Soc Trans; 1980 Dec; 8(6):705-6. PubMed ID: 6780386 [No Abstract] [Full Text] [Related]
7. [Biocatalysts responsible for carbohydrate transport in bacteria]. Gershanovich VN Usp Sovrem Biol; 1971; 72(1):24-46. PubMed ID: 4944705 [No Abstract] [Full Text] [Related]
8. Binding protein-dependent active transport in Escherichia coli and Salmonella typhimurium. Furlong CE Methods Enzymol; 1986; 125():279-89. PubMed ID: 3520223 [No Abstract] [Full Text] [Related]
9. Peptide transport in bacteria. Higgins CF; Gibson MM Methods Enzymol; 1986; 125():365-77. PubMed ID: 3520226 [No Abstract] [Full Text] [Related]
10. Transport through the outer membrane of bacteria. Nikaido H Methods Enzymol; 1986; 125():265-78. PubMed ID: 2423842 [No Abstract] [Full Text] [Related]
11. [The biochemistry and genetics of peptide transport in bacteria]. Gershanovich VN Usp Sovrem Biol; 1975; 80(3):324-34. PubMed ID: 766448 [No Abstract] [Full Text] [Related]
12. Limitations to the use of radioactively labelled substrates for studying peptide transport in microorganisms. Payne JW; Nisbet TM FEBS Lett; 1980 Sep; 119(1):73-6. PubMed ID: 6775979 [No Abstract] [Full Text] [Related]
13. Generation of a protonmotive force in anaerobic bacteria by end-product efflux. ten Brink B; Konings WN Methods Enzymol; 1986; 125():492-510. PubMed ID: 3086668 [No Abstract] [Full Text] [Related]
14. Peptide transport by micro-organisms. Payne JW; Smith MW Adv Microb Physiol; 1994; 36():1-80. PubMed ID: 7942312 [No Abstract] [Full Text] [Related]
15. Glucose transport in Salmonella typhimurium and Escherichia coli. Postma PW; Neyssel OM; van Ree R Eur J Biochem; 1982 Mar; 123(1):113-9. PubMed ID: 7040073 [TBL] [Abstract][Full Text] [Related]
16. Review lecture on the growth and form of a bacterial cell. Pritchard RH Philos Trans R Soc Lond B Biol Sci; 1974 Feb; 267(886):303-36. PubMed ID: 4150667 [No Abstract] [Full Text] [Related]
17. Salmonella typhimurium and Escherichia coli dissimilarity: Closely related bacteria with distinct metabolic profiles. Sargo CR; Campani G; Silva GG; Giordano RC; Da Silva AJ; Zangirolami TC; Correia DM; Ferreira EC; Rocha I Biotechnol Prog; 2015; 31(5):1217-25. PubMed ID: 26097206 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analysis of tetracycline accumulation by Streptococcus faecalis. Lindley EV; Munske GR; Magnuson JA J Bacteriol; 1984 Apr; 158(1):334-6. PubMed ID: 6425265 [TBL] [Abstract][Full Text] [Related]