These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6780469)

  • 1. The glutaraldehyde-treated porcine aortic valve. A study of the leaflets' mechanical properties.
    De Biasi S; Pilotto F; Pozzoni F
    Int J Artif Organs; 1980 Sep; 3(5):271-6. PubMed ID: 6780469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent.
    Sung HW; Chang Y; Chiu CT; Chen CN; Liang HC
    Biomaterials; 1999 Oct; 20(19):1759-72. PubMed ID: 10509186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets?
    Christie GW; Barratt-Boyes BG
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S195-9. PubMed ID: 7646158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue-induced changes to the biaxial mechanical properties of glutaraldehyde-fixed porcine aortic valve leaflets.
    Christie GW; Gross JF; Eberhardt CE
    Semin Thorac Cardiovasc Surg; 1999 Oct; 11(4 Suppl 1):201-5. PubMed ID: 10660193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis.
    Broom ND; Thomson FJ
    Thorax; 1979 Apr; 34(2):166-76. PubMed ID: 113899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart valve tissue.
    Talman EA; Boughner DR
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S369-73. PubMed ID: 7646190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation on function.
    Christie GW
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S25-32; discussion S33. PubMed ID: 1389275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations on glutaraldehyde-treated heterologous cardiac valves.
    Bodnar E; Olsen EG; Ross DN
    Thorax; 1979 Dec; 34(6):794-800. PubMed ID: 120617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements.
    Vesely I; Boughner D
    J Biomech; 1989; 22(6-7):655-71. PubMed ID: 2509479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration.
    Duncan AC; Boughner D; Vesely I
    J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glutaraldehyde fixation and valve constraint conditions on porcine aortic valve leaflet coaptation.
    Broom ND; Marra D
    Thorax; 1982 Aug; 37(8):620-6. PubMed ID: 6817442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement?
    David H; Boughner DR; Vesely I; Gerosa G
    ASAIO J; 1994; 40(2):206-12. PubMed ID: 8003760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stentless bioprosthesis: surgical challenges and implications for long-term durability.
    Barratt-Boyes BG; Christie GW; Raudkivi PJ
    Eur J Cardiothorac Surg; 1992; 6 Suppl 1():S39-42; discussion S43. PubMed ID: 1389277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preseeding with autologous fibroblasts improves endothelialization of glutaraldehyde-fixed porcine aortic valves.
    Gulbins H; Goldemund A; Anderson I; Haas U; Uhlig A; Meiser B; Reichart B
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):592-601. PubMed ID: 12658201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques.
    Mayne AS; Christie GW; Smaill BH; Hunter PJ; Barratt-Boyes BG
    J Thorac Cardiovasc Surg; 1989 Aug; 98(2):170-80. PubMed ID: 2755150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanism for the decrease in stiffness of bioprosthetic heart valve tissues after cross-linking.
    Vesely I
    ASAIO J; 1996; 42(6):993-9. PubMed ID: 8959274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison between glutaraldehyde and diepoxide-fixed stentless porcine aortic valves: biochemical and mechanical characterization and resistance to mineralization.
    Myers DJ; Nakaya G; Girardot MN; Christie GW
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S98-101. PubMed ID: 8581221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanics and mathematical modeling: an inside look at bioprosthetic valve function.
    Vesely I; Krucinski S; Campbell G
    J Card Surg; 1992 Mar; 7(1):85-95. PubMed ID: 1554981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.