These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6780534)

  • 1. Natural heterozygosity in Candida albicans.
    Whelan WL; Magee PT
    J Bacteriol; 1981 Feb; 145(2):896-903. PubMed ID: 6780534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural auxotrophic heterozygosity in Candida albicans.
    Poulter RT
    Crit Rev Microbiol; 1987; 15(1):97-101. PubMed ID: 3319426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombination analysis of naturally diploid Candida albicans.
    Poulter R; Hanrahan V; Jeffery K; Markie D; Shepherd MG; Sullivan PA
    J Bacteriol; 1982 Dec; 152(3):969-75. PubMed ID: 6754707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of Candida albicans: identification of different isoleucine-valine, methionine, and arginine alleles by complementation.
    Kakar SN; Magee PT
    J Bacteriol; 1982 Sep; 151(3):1247-52. PubMed ID: 7050083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetic analysis of Candida albicans: isolation of a wide variety of auxotrophs and demonstration of linkage and complementation.
    Kakar SN; Partridge RM; Magee PT
    Genetics; 1983 Jun; 104(2):241-55. PubMed ID: 6345266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ploidy determination of Canadida albicans.
    Olaiya AF; Sogin SJ
    J Bacteriol; 1979 Dec; 140(3):1043-9. PubMed ID: 391796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The diploid genome sequence of Candida albicans.
    Jones T; Federspiel NA; Chibana H; Dungan J; Kalman S; Magee BB; Newport G; Thorstenson YR; Agabian N; Magee PT; Davis RW; Scherer S
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7329-34. PubMed ID: 15123810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen.
    Ene IV; Farrer RA; Hirakawa MP; Agwamba K; Cuomo CA; Bennett RJ
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8688-E8697. PubMed ID: 30150418
    [No Abstract]   [Full Text] [Related]  

  • 9. Loss of heterozygosity, by mitotic gene conversion and crossing over, causes strain-specific adenine mutants in constitutive diploid Candida albicans.
    Tsang PWK; Cao B; Siu PYL; Wang J
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1623-1629. PubMed ID: 10439401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinogenic activity of nalidixic acid for artificial hybrids but not for natural strains of Candida albicans: evidence for the monoploidy of natural strains.
    Sarachek A
    Z Allg Mikrobiol; 1983; 23(6):385-91. PubMed ID: 6356639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact.
    Marton T; Feri A; Commere PH; Maufrais C; d'Enfert C; Legrand M
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30760617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in
    Forche A; Cromie G; Gerstein AC; Solis NV; Pisithkul T; Srifa W; Jeffery E; Abbey D; Filler SG; Dudley AM; Berman J
    Genetics; 2018 Jul; 209(3):725-741. PubMed ID: 29724862
    [No Abstract]   [Full Text] [Related]  

  • 13. Collaborative consensus for optimized multilocus sequence typing of Candida albicans.
    Bougnoux ME; Tavanti A; Bouchier C; Gow NA; Magnier A; Davidson AD; Maiden MC; D'Enfert C; Odds FC
    J Clin Microbiol; 2003 Nov; 41(11):5265-6. PubMed ID: 14605179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine biosynthesis in selected pathogenic fungi: characterization of lysine auxotrophs and the cloned LYS1 gene of Candida albicans.
    Garrad RC; Bhattacharjee JK
    J Bacteriol; 1992 Nov; 174(22):7379-84. PubMed ID: 1429460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single SNP, G929T (Gly310Val), determines the presence of a functional and a non-functional allele of HIS4 in Candida albicans SC5314: detection of the non-functional allele in laboratory strains.
    Gómez-Raja J; Andaluz E; Magee B; Calderone R; Larriba G
    Fungal Genet Biol; 2008 Apr; 45(4):527-41. PubMed ID: 17964203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of genetic linkage in nonisogenic isolates of Candida albicans.
    Poulter R; Hanrahan V
    J Bacteriol; 1983 Nov; 156(2):498-506. PubMed ID: 6355060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter- and intra-species crosses between Candida albicans and Candida guilliermondii.
    Suzuki T; Rogers AL; Magee PT
    Yeast; 1986 Mar; 2(1):53-8. PubMed ID: 3334695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine auxotrophic heterozygosity in Candida krusei.
    Cao B; Tsang PW; Wu T; Samaranayake LP; Wang J
    J Med Vet Mycol; 1997; 35(1):33-6. PubMed ID: 9061583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular inactivation and mitotic recombination induced by ultraviolet radiation in aneuploid and euploid strains of Candida albicans.
    Rhoads DD; Sarachek A
    Mycopathologia; 1984 Aug; 87(1-2):35-41. PubMed ID: 6387497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UV-induced instability in Candida albicans hybrids.
    Whelan WL; Markie D
    Curr Genet; 1985; 9(2):175-7. PubMed ID: 3916719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.