BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 6780576)

  • 1. Measurement of intracellular pH in sea urchin eggs by 31P NMR.
    Inoue H; Yoshioka T
    J Cell Physiol; 1980 Dec; 105(3):461-8. PubMed ID: 6780576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein synthesis increases after fertilization of sea urchin eggs in the absence of an increase in intracellular pH.
    Rees BB; Patton C; Grainger JL; Epel D
    Dev Biol; 1995 Jun; 169(2):683-98. PubMed ID: 7781908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide efflux accompanies release of fertilization acid from sea urchin eggs.
    Gillies RJ; Rosenberg MP; Deamer DW
    J Cell Physiol; 1981 Aug; 108(2):115-22. PubMed ID: 6790553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of cortical actin polymerization in the sea urchin egg cortex by NH4Cl, procaine and urethane: elevation of cytoplasmic pH is not the common mechanism of action.
    Begg DA; Wong GK; Hoyle DH; Baltz JM
    Cell Motil Cytoskeleton; 1996; 35(3):210-24. PubMed ID: 8913642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of the proteasomes of sand dollar eggs at fertilization depends on the intracellular pH rise.
    Chiba K; Alderton JM; Hoshi M; Steinhardt RA
    Dev Biol; 1999 May; 209(1):52-9. PubMed ID: 10208742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of water in unfertilized and fertilized sea urchin eggs.
    Merta PJ; Fullerton GD; Cameron IL
    J Cell Physiol; 1986 Jun; 127(3):439-47. PubMed ID: 3011815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of PLCgamma-dependent and -independent events during fertilization of sea urchin eggs.
    Carroll DJ; Albay DT; Terasaki M; Jaffe LA; Foltz KR
    Dev Biol; 1999 Feb; 206(2):232-47. PubMed ID: 9986735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The calcium transient in sea urchin eggs during fertilization requires the production of inositol 1,4,5-trisphosphate.
    Lee SJ; Shen SS
    Dev Biol; 1998 Jan; 193(2):195-208. PubMed ID: 9473324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular pH of sea urchin eggs measured by the dimethyloxazolidinedione (DMO) method.
    Johnson CH; Epel D
    J Cell Biol; 1981 May; 89(2):284-91. PubMed ID: 7195903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of caulerpenyne, a toxin extracted from Caulerpa taxifolia on mechanisms regulating intracellular pH in sea urchin eggs and sea bream hepatocytes.
    Galgani I; Pesando D; Porthe-Nibelle J; Fossat B; Girard JP
    J Biochem Toxicol; 1996; 11(5):243-50. PubMed ID: 9110246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the intracellular pH threshold for sperm aster formation in sea urchin eggs.
    Hamaguchi MS; Hamaguchi Y
    Dev Growth Differ; 2001 Aug; 43(4):447-58. PubMed ID: 11473551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of action of NH4Cl and other weak bases in the activation of sea urchin eggs.
    Winkler MM; Grainger JL
    Nature; 1978 Jun; 273(5663):536-8. PubMed ID: 26876
    [No Abstract]   [Full Text] [Related]  

  • 14. Intracellular pH change does not accompany egg activation in the mouse.
    Phillips KP; Baltz JM
    Mol Reprod Dev; 1996 Sep; 45(1):52-60. PubMed ID: 8873070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of intracellular pH in sea urchin eggs by medium containing both weak acid and base.
    Hamaguchi MS; Watanabe K; Hamaguchi Y
    Cell Struct Funct; 1997 Aug; 22(4):387-98. PubMed ID: 9368712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 31P-NMR study of the activation of the sea urchin egg.
    Winkler MM; Matson GB; Hershey JW; Bradbury EM
    Exp Cell Res; 1982 May; 139(1):217-22. PubMed ID: 7200902
    [No Abstract]   [Full Text] [Related]  

  • 17. Changes in intracellular acidic compartments in sea urchin eggs after activation.
    Lee HC; Epel D
    Dev Biol; 1983 Aug; 98(2):446-54. PubMed ID: 6409692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation between intracellular pH and rate of protein synthesis in sea urchin eggs and the existence of a pH-independent event triggered by ammonia.
    Dubé F; Epel D
    Exp Cell Res; 1986 Jan; 162(1):191-204. PubMed ID: 3940228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined imaging and chemical sensing of fertilization-induced acid release from single sea urchin eggs.
    Michael KL; Walt DR
    Anal Biochem; 1999 Sep; 273(2):168-78. PubMed ID: 10469487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of divalent cations in activation of the sea urchin egg. I. Effect of fertilization on divalent cation content.
    Azarnia R; Chambers EL
    J Exp Zool; 1976 Oct; 198(1):65-77. PubMed ID: 978163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.