These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 6781539)
1. Energy transfer from phycobiliproteins to photosystem I in vegetative cells and heterocysts of Anabaena variabilis. Peterson RB; Dolan E; Calvert HE; Ke B Biochim Biophys Acta; 1981 Feb; 634(2):237-48. PubMed ID: 6781539 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of thylakoid membranes in terminal heterocysts and vegetative cells from two cyanobacteria, Rivularia M-261 and Anabaena variabilis, by fluorescence and absorption spectral microscopy. Nozue S; Katayama M; Terazima M; Kumazaki S Biochim Biophys Acta Bioenerg; 2017 Sep; 1858(9):742-749. PubMed ID: 28576442 [TBL] [Abstract][Full Text] [Related]
3. Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Ducret A; Sidler W; Wehrli E; Frank G; Zuber H Eur J Biochem; 1996 Mar; 236(3):1010-24. PubMed ID: 8665889 [TBL] [Abstract][Full Text] [Related]
4. Energy transfer in Anabaena variabilis filaments under nitrogen depletion, studied by time-resolved fluorescence. Onishi A; Aikawa S; Kondo A; Akimoto S Photosynth Res; 2015 Aug; 125(1-2):191-9. PubMed ID: 25596847 [TBL] [Abstract][Full Text] [Related]
5. Excitation-energy transfer in heterocysts isolated from the cyanobacterium Anabaena sp. PCC 7120 as studied by time-resolved fluorescence spectroscopy. Nagao R; Yokono M; Ueno Y; Nakajima Y; Suzuki T; Kato KH; Tsuboshita N; Dohmae N; Shen JR; Ehira S; Akimoto S Biochim Biophys Acta Bioenerg; 2022 Jan; 1863(1):148509. PubMed ID: 34793768 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic vesicles with bound phycobilisomes from Anabaena variabilis. Katoh T; Gantt E Biochim Biophys Acta; 1979 Jun; 546(3):383-93. PubMed ID: 110343 [TBL] [Abstract][Full Text] [Related]
7. The photochemical and fluorescence properties of whole cells, spheroplasts and spheroplast particles from the blue-green alga Phormidium luridum. Tel-or E; Malkin S Biochim Biophys Acta; 1977 Feb; 459(2):157-74. PubMed ID: 402150 [TBL] [Abstract][Full Text] [Related]
8. Relationship between age of culture and occurrence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga. Thomas J J Bacteriol; 1972 Apr; 110(1):92-5. PubMed ID: 4622907 [TBL] [Abstract][Full Text] [Related]
9. Transformation of thylakoid membranes during differentiation from vegetative cell into heterocyst visualized by microscopic spectral imaging. Kumazaki S; Akari M; Hasegawa M Plant Physiol; 2013 Mar; 161(3):1321-33. PubMed ID: 23274239 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence spectroscopy study of heterocyst differentiation in Anabaena PCC 7120 filaments. Ke S; Haselkorn R Microbiology (Reading); 2013 Feb; 159(Pt 2):253-258. PubMed ID: 23223442 [TBL] [Abstract][Full Text] [Related]
11. [The absorption and fluorescence spectra of the cyanobacterial phycobilins of cryptoendolithic lichens in the high-polar region of Antarctica]. Erokhina LG; Shatilovich AV; Kaminskaia OP; Gilichinskiĭ DA Mikrobiologiia; 2002; 71(5):697-704. PubMed ID: 12449638 [TBL] [Abstract][Full Text] [Related]
12. Estimation of chlorophyll a distribution in the photosynthetic pigment systems I and II of the blue-green alga Anabaena variabilis. Mimuro M; Fujita Y Biochim Biophys Acta; 1977 Mar; 459(3):376-89. PubMed ID: 66064 [TBL] [Abstract][Full Text] [Related]
13. Excitation energy transfer to Photosystem I in filaments and heterocysts of Nostoc punctiforme. Cardona T; Magnuson A Biochim Biophys Acta; 2010 Mar; 1797(3):425-33. PubMed ID: 20036211 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence and energy transfer in phycobiliprotein-containing algae at low temperature. Rijgersberg CP; Amesz J Biochim Biophys Acta; 1980 Dec; 593(2):261-71. PubMed ID: 7236636 [TBL] [Abstract][Full Text] [Related]
15. Fluorescent tandem phycobiliprotein conjugates. Emission wavelength shifting by energy transfer. Glazer AN; Stryer L Biophys J; 1983 Sep; 43(3):383-6. PubMed ID: 6414547 [TBL] [Abstract][Full Text] [Related]
16. Isolation of cyanobacterial heterocysts with high and sustained dinitrogen-fixation capacity supported by endogenous reductants. Jensen BB; Cox RP; Burris RH Arch Microbiol; 1986 Aug; 145(3):241-7. PubMed ID: 3094473 [TBL] [Abstract][Full Text] [Related]
17. Energy transfer in Anabaena variabilis filaments adapted to nitrogen-depleted and nitrogen-enriched conditions studied by time-resolved fluorescence. Onishi A; Aikawa S; Kondo A; Akimoto S Photosynth Res; 2017 Sep; 133(1-3):317-326. PubMed ID: 28210833 [TBL] [Abstract][Full Text] [Related]
18. Characterization of thylakoid membrane in a heterocystous cyanobacterium and green alga with dual-detector fluorescence lifetime imaging microscopy with a systematic change of incident laser power. Nozue S; Mukuno A; Tsuda Y; Shiina T; Terazima M; Kumazaki S Biochim Biophys Acta; 2016 Jan; 1857(1):46-59. PubMed ID: 26474523 [TBL] [Abstract][Full Text] [Related]
19. Excitation energy transfer from phycobilisomes to photosystems: a phenomenon associated with the temporal separation of photosynthesis and nitrogen fixation in a cyanobacterium, Plectonema boryanum. Misra HS; Mahajan SK Biochim Biophys Acta; 2000 Jul; 1459(1):139-47. PubMed ID: 10924907 [TBL] [Abstract][Full Text] [Related]
20. Regulation of photosynthesis during heterocyst differentiation in Anabaena sp. strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy. Ferimazova N; Felcmanová K; Setlíková E; Küpper H; Maldener I; Hauska G; Sedivá B; Prášil O Photosynth Res; 2013 Sep; 116(1):79-91. PubMed ID: 23918299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]