These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 6781984)

  • 41. Lactose utilization by Saccharomyces cerevisiae strains expressing Kluyveromyces lactis LAC genes.
    Rubio-Texeira M; Arévalo-Rodríguez M; Lequerica JL; Polaina J
    J Biotechnol; 2001 Nov; 84(2):97-106. PubMed ID: 11090681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. beta-galactosidase and the lactose operon.
    Zabin I
    UCLA Forum Med Sci; 1979; (21):49-62. PubMed ID: 122172
    [No Abstract]   [Full Text] [Related]  

  • 43. Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae.
    Meyer J; Walker-Jonah A; Hollenberg CP
    Mol Cell Biol; 1991 Nov; 11(11):5454-61. PubMed ID: 1922058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineered autolytic yeast strains secreting Kluyveromyces lactis beta-galactosidase for production of heterologous proteins in lactose media.
    Becerra M; Rodríguez-Belmonte E; Esperanza Cerdán M; González Siso MI
    J Biotechnol; 2004 Apr; 109(1-2):131-7. PubMed ID: 15063621
    [TBL] [Abstract][Full Text] [Related]  

  • 45. BETA-GALACTOSIDASE OF STREPTOCOCCUS LACTIS.
    CITTI JE; SANDINE WE; ELLIKER PR
    J Bacteriol; 1965 Apr; 89(4):937-42. PubMed ID: 14276118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular and genetic characterization of lactose-metabolic genes of Streptococcus cremoris.
    Inamine JM; Lee LN; LeBlanc DJ
    J Bacteriol; 1986 Sep; 167(3):855-62. PubMed ID: 3091581
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial β-Galactosidases of industrial importance: Computational studies on the effects of point mutations on the lactose hydrolysis reaction.
    de Andrade BC; Timmers LFSM; Renard G; Volpato G; de Souza CFV
    Biotechnol Prog; 2020 Jul; 36(4):e2982. PubMed ID: 32083812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Direct selection of mutations reducing transcription or translation of the recA gene of Escherichia coli with a recA-lacZ protein fusion.
    Weisemann JM; Weinstock GM
    J Bacteriol; 1985 Aug; 163(2):748-55. PubMed ID: 3160689
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of genes LAC1 and LAC2 in the biosynthesis of lactose metabolism enzymes by Kluyveromyces lactis.
    Boze H; Nicol D; Moulin G; Galzy P
    Acta Microbiol Hung; 1987; 34(1):73-83. PubMed ID: 3115053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on Tn951 (lac+) expression in Agrobacterium.
    Borland PA; Sastry GR
    Mol Gen Genet; 1984; 193(3):535-7. PubMed ID: 6323925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression of the transcriptional activator LAC9 (KlGAL4) in Kluyveromyces lactis is controlled by autoregulation.
    Zachariae W; Breunig KD
    Mol Cell Biol; 1993 May; 13(5):3058-66. PubMed ID: 8474461
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutants of yeast defective in sucrose utilization.
    Carlson M; Osmond BC; Botstein D
    Genetics; 1981 May; 98(1):25-40. PubMed ID: 7040163
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of formation of the intracellular beta-galactosidase activity of Aspergillus nidulans.
    Fekete E; Karaffa L; Sándor E; Seiboth B; Biró S; Szentirmai A; Kubicek CP
    Arch Microbiol; 2002 Dec; 179(1):7-14. PubMed ID: 12471499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis.
    Pannala VR; Bhartiya S; Venkatesh KV
    FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
    McKay L; Miller A; Sandine WE; Elliker PR
    J Bacteriol; 1970 Jun; 102(3):804-9. PubMed ID: 5429725
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization and optimization of the LAC4 upstream region for low-leakage expression in Kluyveromyces marxianus.
    Liu B; Wu P; Zhou J; Yin A; Yu Y; Lu H
    Yeast; 2022 Apr; 39(4):283-296. PubMed ID: 34791694
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A pH-conditional mutant of Escherichia coli.
    Colb M; Shapiro L
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5637-41. PubMed ID: 23535
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Altered mRNA metabolism in ribonuclease III-deficient strains of Escherichia coli.
    Talkad V; Achord D; Kennell D
    J Bacteriol; 1978 Aug; 135(2):528-41. PubMed ID: 98520
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of lac genes in induction of beta-galactosidase synthesis by galactose.
    Llanes B; McFall E
    J Bacteriol; 1969 Jan; 97(1):223-9. PubMed ID: 4884813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.