These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 6782433)
1. [Resting state in Pseudomonas fluorescens induced by a prolonged water deficit]. Shevtsova II; Ukrainskiĭ VV Mikrobiologiia; 1980; 49(6):888-92. PubMed ID: 6782433 [TBL] [Abstract][Full Text] [Related]
2. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Jaleel CA; Manivannan P; Sankar B; Kishorekumar A; Gopi R; Somasundaram R; Panneerselvam R Colloids Surf B Biointerfaces; 2007 Oct; 60(1):7-11. PubMed ID: 17681765 [TBL] [Abstract][Full Text] [Related]
3. [Structural and physiological diversity among cystlike resting cells of bacteria of the genus Pseudomonas]. Muliukin AL; Suzina NE; Duda VI; El'-Registan GI Mikrobiologiia; 2008; 77(4):512-23. PubMed ID: 18825979 [TBL] [Abstract][Full Text] [Related]
4. [Survival of bacteria in the Artificial Mars unit]. Imshenetskiĭ AA; Murzakov BG; Evdokimova MD; Dorofeeva IK Mikrobiologiia; 1984; 53(5):731-7. PubMed ID: 6439981 [TBL] [Abstract][Full Text] [Related]
5. Monitoring physiological status of GFP-tagged Pseudomonas fluorescens SBW25 under different nutrient conditions and in soil by flow cytometry. Maraha N; Backman A; Jansson JK FEMS Microbiol Ecol; 2004 Dec; 51(1):123-32. PubMed ID: 16329861 [TBL] [Abstract][Full Text] [Related]
6. Horizontal and vertical movement of Pseudomonas fluorescens toward exudate of Macrophomina phaseolina in soil: influence of motility and soil properties. Singh T; Srivastava AK; Arora DK Microbiol Res; 2002; 157(2):139-48. PubMed ID: 12002402 [TBL] [Abstract][Full Text] [Related]
7. Indigenous microflora responses to introduction of cyanogenic strains of Pseudomonas fluorescens into soil. Piotrowska-Seget Z; Kozdrój J Acta Microbiol Pol; 1999; 48(1):73-8. PubMed ID: 10467697 [TBL] [Abstract][Full Text] [Related]
8. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
9. Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Couillerot O; Prigent-Combaret C; Caballero-Mellado J; Moënne-Loccoz Y Lett Appl Microbiol; 2009 May; 48(5):505-12. PubMed ID: 19291210 [TBL] [Abstract][Full Text] [Related]
10. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms. Jeyalakshmi D; Kanmani S J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919 [TBL] [Abstract][Full Text] [Related]
11. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria. Ahn TS; Ka JO; Lee GH; Song HG J Microbiol Biotechnol; 2007 Jan; 17(1):52-7. PubMed ID: 18051353 [TBL] [Abstract][Full Text] [Related]
12. Comparative adherence to human A549 cells, plant fibronectin-like protein, and polystyrene surfaces of four Pseudomonas fluorescens strains from different ecological origin. Cossard E; Gallet O; Di Martino P Can J Microbiol; 2005 Sep; 51(9):811-5. PubMed ID: 16391662 [TBL] [Abstract][Full Text] [Related]
13. Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. Stallwood B; Shears J; Williams PA; Hughes KA J Appl Microbiol; 2005; 99(4):794-802. PubMed ID: 16162230 [TBL] [Abstract][Full Text] [Related]
14. [Pseudomonas fluorescens survival in soils with different contents of organic matter]. Perotti EB; Menéndez LT; Gaia OE; Pidello A Rev Argent Microbiol; 2005; 37(2):102-5. PubMed ID: 16178468 [TBL] [Abstract][Full Text] [Related]
15. Maintenance and impacts of an inoculated mer/luc-tagged Pseudomonas fluorescens on microbial communities in birch rhizospheres developed on humus and peat. Björklöf K; Sen R; Jørgensen KS Microb Ecol; 2003 Jan; 45(1):39-52. PubMed ID: 12447585 [TBL] [Abstract][Full Text] [Related]
16. Maintenance of a Pseudomonas fluorescens plasmid in heterologous hosts: metabolic burden as a more reliable variable to predict plasmid instability. Chandrasekaran S; Lalithakumari D Indian J Exp Biol; 1998 Jul; 36(7):693-8. PubMed ID: 9782786 [TBL] [Abstract][Full Text] [Related]
17. [Biological properties of the wild rhizosphere strain Pseudomonas fluorescens 2137 and its derivatives marked with the gusA gene]. Viazovaia AA; Limeshchenko EV; Buren' VM Mikrobiologiia; 2006; 75(5):689-95. PubMed ID: 17091592 [TBL] [Abstract][Full Text] [Related]
18. [Properties of the phenotypic variants of Pseudomonas aurantiaca and P. fluorescens]. Muliukin AL; Kozlova AN; El'-Registan GI Mikrobiologiia; 2008; 77(6):766-76. PubMed ID: 19137715 [TBL] [Abstract][Full Text] [Related]
19. Mucoid mutants of the biocontrol strain pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Bianciotto V; Andreotti S; Balestrini R; Bonfante P; Perotto S Mol Plant Microbe Interact; 2001 Feb; 14(2):255-60. PubMed ID: 11204790 [TBL] [Abstract][Full Text] [Related]
20. [The destruction of mono- and polycyclic aromatic hydrocarbons by cultures of Pseudomonas fluorescens 1-D biovar II and Bacillus subtilis 2-D]. Dumans'ka TU Mikrobiol Z; 1995; 57(1):95-101. PubMed ID: 7728279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]