BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 6783074)

  • 1. pH properties and chemical mechanism of action of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Veloso D; Cleland WW; Porter JW
    Biochemistry; 1981 Feb; 20(4):887-94. PubMed ID: 6783074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of the individual reductive steps catalyzed by beta-hydroxy-beta-methylglutaryl-coenzyme A reductase obtained from yeast.
    Qureshi N; Dugan RE; Cleland WW; Porter JW
    Biochemistry; 1976 Sep; 15(19):4191-07. PubMed ID: 9133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rat liver 3-hydroxy-3-methylglutaryl-CoA reductase. Catalysis of the reverse reaction and two half-reactions.
    Sherban DG; Kennelly PJ; Brandt KG; Rodwell VW
    J Biol Chem; 1985 Oct; 260(23):12579-85. PubMed ID: 2413027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the principal catalytically important acidic residue of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
    Wang Y; Darnay BG; Rodwell VW
    J Biol Chem; 1990 Dec; 265(35):21634-41. PubMed ID: 2123872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Haloferax volcanii: purification, characterization, and expression in Escherichia coli.
    Bischoff KM; Rodwell VW
    J Bacteriol; 1996 Jan; 178(1):19-23. PubMed ID: 8550415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual coenzyme specificity of Archaeoglobus fulgidus HMG-CoA reductase.
    Kim DY; Stauffacher CV; Rodwell VW
    Protein Sci; 2000 Jun; 9(6):1226-34. PubMed ID: 10892815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human liver aldehyde reductase: pH dependence of steady-state kinetic parameters.
    Bhatnagar A; Das B; Liu SQ; Srivastava SK
    Arch Biochem Biophys; 1991 Jun; 287(2):329-36. PubMed ID: 1654814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode of interaction of beta-hydroxy-beta-methylglutaryl coenzyme A reductase with strong binding inhibitors: compactin and related compounds.
    Nakamura CE; Abeles RH
    Biochemistry; 1985 Mar; 24(6):1364-76. PubMed ID: 3886005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis by Syrian hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proposed roles of histidine 865, glutamate 558, and aspartate 766.
    Frimpong K; Rodwell VW
    J Biol Chem; 1994 Apr; 269(15):11478-83. PubMed ID: 7908908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isoflavones inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase in vitro.
    Sung JH; Lee SJ; Park KH; Moon TW
    Biosci Biotechnol Biochem; 2004 Feb; 68(2):428-32. PubMed ID: 14981309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition.
    Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH
    Biochemistry; 1995 Nov; 34(44):14374-84. PubMed ID: 7578041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of the catalytic portion of human HMG-CoA reductase.
    Istvan ES; Deisenhofer J
    Biochim Biophys Acta; 2000 Dec; 1529(1-3):9-18. PubMed ID: 11111074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.
    Haines BE; Steussy CN; Stauffacher CV; Wiest O
    Biochemistry; 2012 Oct; 51(40):7983-95. PubMed ID: 22971202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-Hydroxy-3-methylglutaryl-CoA reductase mediates the preparation of its substrate diastereomers and is inhibited by (3R)-3-hydroxy-3-methylglutaryl-CoA.
    Hupperich M; Thomer A; Eggerer H
    Biol Chem Hoppe Seyler; 1992 Sep; 373(9):925-30. PubMed ID: 1466790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
    Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M
    Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases.
    Friesen JA; Rodwell VW
    Genome Biol; 2004; 5(11):248. PubMed ID: 15535874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of 3-hydroxy-3-methylglutaryl-coenzyme A lyase arginine-41 as a catalytic residue: use of acetyldithio-coenzyme A to monitor product enolization.
    Tuinstra RL; Wang CZ; Mitchell GA; Miziorko HM
    Biochemistry; 2004 May; 43(18):5287-95. PubMed ID: 15122894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of the dihydrofolate reductase reaction as determined by pH studies.
    Stone SR; Morrison JF
    Biochemistry; 1984 Jun; 23(12):2753-8. PubMed ID: 6380573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation.
    Beg ZH; Stonik JA; Brewer HB
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3678-82. PubMed ID: 278983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.