These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 6783444)

  • 1. Hippocampal involvement in the pharmacologic induction of withdrawal-like behaviors.
    Isaacson RL; Lanthorn TH
    Fed Proc; 1981 Apr; 40(5):1508-12. PubMed ID: 6783444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological aspects of shaking behavior produced by TRH, AG-3-5, and morphine withdrawal.
    Wei ET
    Fed Proc; 1981 Apr; 40(5):1491-6. PubMed ID: 6260535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radioimmunoassay of enkephalins: levels of methionine- and leucine-enkephalin in morphine-dependent and kainic acid-lesioned rat brains.
    Childers SR; Schwarcz R; Coyle JT; Snyder SH
    Adv Biochem Psychopharmacol; 1978; 18():161-73. PubMed ID: 206108
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of intraventricular morphine and enkephalins on schedule-controlled behavior in nondependent, morphine-dependent and postdependent rats.
    Brady LS; Holtzman SG
    J Pharmacol Exp Ther; 1981 Nov; 219(2):344-51. PubMed ID: 7197301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shuttle behavior in rats after lesion of hippocampal pyramidal cells with kainic acid.
    Turski L; Czuczwar SJ; Turski W; Kleinrok Z
    Methods Find Exp Clin Pharmacol; 1981; 3(6):361-6. PubMed ID: 7329160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enkephalin contained in dentate granule cells is important for kainic acid-induced wet dog shakes.
    Grimes L; Hong J; McGinty J; Mitchell C; Obie J; Tilson H
    NIDA Res Monogr; 1986; 75():481-4. PubMed ID: 3123964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convulsant action of pentetrazol in rats with selective lesions of the hippocampal pyramidal cells with intracerebroventricular kainic acid.
    Czuczwar SJ; Turski L; Turski W; Kleinrok Z
    Methods Find Exp Clin Pharmacol; 1982; 4(5):293-8. PubMed ID: 7121135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RX 336-M, a new chemical tool in the analysis of the quasi-morphine withdrawal syndrome.
    Cowan A
    Fed Proc; 1981 Apr; 40(5):1497-501. PubMed ID: 6783443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide and non-peptide opioid-induced hyperthermia in rabbits.
    Kandasamy SB; Williams BA
    Brain Res; 1983 Apr; 265(1):63-71. PubMed ID: 6303508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of morphine, nalorphine and morphine withdrawal on lethal toxicity of intracerebroventricular kainic acid in mice.
    Czuczwar SJ; Turski L; Kleinrok Z
    Pol J Pharmacol Pharm; 1981; 33(6):611-4. PubMed ID: 6890206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroexcitatory properties of kainic acid. II) Neuronal damages following intracerebreal microinjections in behavioural rats.
    Ricciardi G; Forchetti C; Gasbarri A; Scarnati E; Pacitti C
    Boll Soc Ital Biol Sper; 1981 Apr; 57(8):919-25. PubMed ID: 7272068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intracerebroventricular kainic acid-induced damage affects animal nociceptive behavior.
    Shim EJ; Seo YJ; Kwon MS; Ham YO; Choi OS; Lee JY; Choi SM; Suh HW
    Brain Res Bull; 2007 Jul; 73(4-6):203-9. PubMed ID: 17562385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and biochemical effects of intraventricular kainic acid.
    Byrska B; Reichenberg K; Romańska I; Vetulani J
    Pol J Pharmacol Pharm; 1980; 32(4):531-8. PubMed ID: 6265888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enkephalin analogs and physical dependence.
    Wei ET
    J Pharmacol Exp Ther; 1981 Jan; 216(1):12-8. PubMed ID: 7192734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABA and opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle from acute morphine.
    Cabral A; Ruggiero RN; Nobre MJ; Brandão ML; Castilho VM
    Prog Neuropsychopharmacol Biol Psychiatry; 2009 Mar; 33(2):334-44. PubMed ID: 19150477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphine withdrawal affects both delayed-escape behaviour in Morris water maze and hippocampal NR2A/2B expression ratio.
    Dong Z; Zhong W; Tian M; Han H; Mao R; Cao J; Sui N; Xu T; Luo J; Xu L
    Brain Res; 2008 May; 1207():164-73. PubMed ID: 18374314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injections of an opioid antagonist into the locus coeruleus and periaqueductal gray but not the amygdala precipitates morphine withdrawal in the 7-day-old rat.
    Jones KL; Barr GA
    Synapse; 2001 Feb; 39(2):139-51. PubMed ID: 11180501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrent convulsions and hippocampal [Met5]-enkephalin content.
    Hong JS; Wood PL; Gillin JC; Yang HY; Costa E
    Adv Biochem Psychopharmacol; 1980; 22():385-97. PubMed ID: 6156581
    [No Abstract]   [Full Text] [Related]  

  • 19. Total neurochemical lesion of noradrenergic neurons of the locus ceruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal.
    Caillé S; Espejo EF; Reneric JP; Cador M; Koob GF; Stinus L
    J Pharmacol Exp Ther; 1999 Aug; 290(2):881-92. PubMed ID: 10411605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of intraventricular morphine and enkephalins on locomotor activity in nondependent, morphine-dependent and postdependent rats.
    Brady LS; Holtzman SG
    J Pharmacol Exp Ther; 1981 Sep; 218(3):613-20. PubMed ID: 7021799
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.