BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 6784166)

  • 1. Behaviour of bacteriorhodopsin incorporated into lipid vesicles after solubilization with different detergents.
    Mueller U; Cherry RJ
    Acta Histochem Suppl; 1981; 23():205-9. PubMed ID: 6784166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of bacteriorhodopsin/phospholipid interactions in DMPC and DMPG bilayers: an electron spin resonance spectroscopy and freeze-fracture electron microscopy study.
    Gale P
    Biochem Biophys Res Commun; 1993 Oct; 196(2):879-84. PubMed ID: 8240365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid--protein interactions in bacteriorhodopsin--dimyristoylphosphatidylcholine vesicles.
    Heyn MP; Cherry RJ; Dencher NA
    Biochemistry; 1981 Feb; 20(4):840-9. PubMed ID: 7213618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral segregation of proteins induced by cholesterol in bacteriorhodopsin-phospholipid vesicles.
    Cherry RJ; Müller U; Holenstein C; Heyn MP
    Biochim Biophys Acta; 1980 Feb; 596(1):145-51. PubMed ID: 7353006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
    Holland JW; Cullis PR; Madden TD
    Biochemistry; 1996 Feb; 35(8):2610-7. PubMed ID: 8611564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P-Nuclear magnetic resonance and freeze-fracture electron microscopic studies on reconstituted bacteriorhodopsin vesicles.
    Van Dijck PW; Nicolay K; Leunissen-Bijvelt J; Van Dam K; Kaptein R
    Eur J Biochem; 1981 Jul; 117(3):639-45. PubMed ID: 7285909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipidic particles.
    Verkleij AJ; de Kruijff B; van Echteld CJ; Gerritsen WJ; Mombers C; Noordam PC; Leunissen-Bijvelt J; de Gier J
    Acta Histochem Suppl; 1981; 23():145-9. PubMed ID: 6784158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteriorhodopsin remains dispersed in fluid phospholipid bilayers over a wide range of bilayer thicknesses.
    Lewis BA; Engelman DM
    J Mol Biol; 1983 May; 166(2):203-10. PubMed ID: 6854643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calorimetric and fluorescence depolarization studies on the lipid phase transition of bacteriorhodopsin--dimyristoylphosphatidylcholine vesicles.
    Heyn MP; Blume A; Rehorek M; Dencher NA
    Biochemistry; 1981 Dec; 20(25):7109-15. PubMed ID: 7317369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic rotation of bacteriorhodopsin in lipid membranes. Comparison of theory with experiment.
    Cherry RJ; Godfrey RE
    Biophys J; 1981 Oct; 36(1):257-76. PubMed ID: 7284552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphatidylcholine structure determines cholesterol solubility and lipid polymorphism.
    Epand RM; Epand RF; Hughes DW; Sayer BG; Borochov N; Bach D; Wachtel E
    Chem Phys Lipids; 2005 May; 135(1):39-53. PubMed ID: 15854624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insertion of bacteriorhodopsin into polymerized diacetylenic phosphatidylcholine bilayers.
    Ahl PL; Price R; Smuda J; Gaber BP; Singh A
    Biochim Biophys Acta; 1990 Oct; 1028(2):141-53. PubMed ID: 2223788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive detection of protein-lipid interaction change on bacteriorhodopsin using dodecyl β-D-maltoside.
    Sasaki T; Demura M; Kato N; Mukai Y
    Biochemistry; 2011 Mar; 50(12):2283-90. PubMed ID: 21314119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin.
    Sternberg B; L'Hostis C; Whiteway CA; Watts A
    Biochim Biophys Acta; 1992 Jul; 1108(1):21-30. PubMed ID: 1643078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramembrane substitutions in helix D of bacteriorhodopsin disrupt the purple membrane.
    Krebs MP; Li W; Halambeck TP
    J Mol Biol; 1997 Mar; 267(1):172-83. PubMed ID: 9096216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of cholesterol on the solubilization of phosphatidylcholine bilayers by the non-ionic surfactant Triton X-100.
    Schnitzer E; Kozlov MM; Lichtenberg D
    Chem Phys Lipids; 2005 May; 135(1):69-82. PubMed ID: 15854626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-induced conformational changes of an integral membrane protein: an infrared spectroscopic study of the effects of Triton X-100 treatment on the purple membrane of Halobacterium halobium ET1001.
    Barnett SM; Dracheva S; Hendler R; Levin IW
    Biochemistry; 1996 Apr; 35(14):4558-67. PubMed ID: 8605206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of protein-protein interaction on light adaptation of bacteriorhodopsin.
    Casadio R; Stoeckenius W
    Biochemistry; 1980 Jul; 19(14):3374-81. PubMed ID: 6773540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-fracture of lipids and model membrane systems.
    Hope MJ; Wong KF; Cullis PR
    J Electron Microsc Tech; 1989 Dec; 13(4):277-87. PubMed ID: 2681573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein rotation and chromophore orientation in reconstituted bacteriorhodopsin vesicles.
    Hoffmann W; Restall CJ; Hyla R; Chapman D
    Biochim Biophys Acta; 1980 Nov; 602(3):531-8. PubMed ID: 6893670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.