These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6784208)

  • 1. Non-equilibrium acid-base status in C. productus: role of exoskeletal carbonate buffers.
    Defur PL; Wilkes PR; McMahon BR
    Respir Physiol; 1980 Dec; 42(3):247-61. PubMed ID: 6784208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new operational approach to PCO2 determination in crustacean hemolymph.
    Wilkes PR; Defur PL; McMahon BR
    Respir Physiol; 1980 Oct; 42(1):17-28. PubMed ID: 6777844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ANALYSIS OF HEMOLYMPH OXYGEN LEVELS AND ACID-BASE STATUS DURING EMERSION 'IN SITU' IN THE RED ROCK CRAB, CANCER PRODUCTUS.
    Defur PL; McMahon BR; Booth CE
    Biol Bull; 1983 Dec; 165(3):582-590. PubMed ID: 29324012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ambient chloride concentration changes on branchial chloride-bicarbonate exchanges and hemolymph acid-base balance of crayfish.
    Dejours P; Armand J; Beekenkamp H
    Respir Physiol; 1982 Jun; 48(3):375-86. PubMed ID: 7123021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid-base changes on transfer between sea- and freshwater in the Chinese crab, Eriocheir sinensis.
    Truchot JP
    Respir Physiol; 1992 Mar; 87(3):419-27. PubMed ID: 1604063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood acid-base changes during experimental emersion and reimmersion of the intertidal crab Carcinus maenas (L.).
    Truchot JP
    Respir Physiol; 1975 Apr; 23(3):351-60. PubMed ID: 238271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term exposure to high pCO
    Fehsenfeld S; Yoon GR; Quijada-Rodriguez AR; Kandachi-Toujas H; Calosi P; Breton S; Weihrauch D
    Comp Biochem Physiol A Mol Integr Physiol; 2024 May; 291():111603. PubMed ID: 38346534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base regulation during exercise and recovery in the blue crab, Callinectes sapidus.
    Booth CE; McMahon BR; De Fur PL; Wilkes PR
    Respir Physiol; 1984 Dec; 58(3):359-76. PubMed ID: 6528111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory, blood-gas transport, and acid-base response of Leptograpsus variegatus to long-term immersion and hyposaline exposure.
    Cooper AR; Morris S
    Physiol Zool; 1997; 70(2):181-92. PubMed ID: 9231391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise and emersion in air, and recovery in seawater in the green crab (Carcinus maenas): metabolic, acid-base, cardio-ventilatory and ionoregulatory responses.
    Wood CM; Po BHK
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35603458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemolymph acid-base balance of the crayfish Astacus leptodactylus as a function of the oxygenation and the acid-base balance of the ambient water.
    Dejours P; Armand J
    Respir Physiol; 1980 Jul; 41(1):1-11. PubMed ID: 6771852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The response of two species of unionid mussels to extended exposure to elevated carbon dioxide.
    Hannan KD; Jeffrey JD; Hasler CT; Suski CD
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Nov; 201():173-181. PubMed ID: 27476676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Living in warmer, more acidic oceans retards physiological recovery from tidal emersion in the velvet swimming crab, Necora puber.
    Rastrick SP; Calosi P; Calder-Potts R; Foggo A; Nightingale G; Widdicombe S; Spicer JI
    J Exp Biol; 2014 Jul; 217(Pt 14):2499-508. PubMed ID: 24803457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acid-base regulation of ion transport in rabbit ileum in vitro.
    DeSoignie R; Sellin JH
    Gastroenterology; 1990 Jul; 99(1):132-41. PubMed ID: 2111782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algorithms for calculating and correcting blood-gas and acid-base variables.
    Gabel RA
    Respir Physiol; 1980 Dec; 42(3):211-32. PubMed ID: 6784207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential acid-base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2.
    Fehsenfeld S; Weihrauch D
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Jan; 164(1):54-65. PubMed ID: 23022520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity to near-future CO
    Whiteley NM; Suckling CC; Ciotti BJ; Brown J; McCarthy ID; Gimenez L; Hauton C
    Sci Rep; 2018 Oct; 8(1):15639. PubMed ID: 30353120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood acid-base state at a variable temperature. A graphical representation.
    Malan A
    Respir Physiol; 1977 Nov; 31(2):259-75. PubMed ID: 22117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Blood acid-base changes produced by variations of water oxygenation in the crab Carcinus maenas (author's transl)].
    Truchot JP
    J Physiol (Paris); 1975 Dec; 70(5):583-92. PubMed ID: 4615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PCO2 modulation of ventilation and HCO3- buffer during chronic metabolic acidosis.
    Honer WG; Jennings DB
    Respir Physiol; 1983 Nov; 54(2):241-58. PubMed ID: 6420862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.