These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6784670)

  • 1. Clinical isolate of Pseudomonas aeruginosa that degrades salicylate by the ortho pathway.
    Ohta S; Matsumoto H; Terawaki Y
    Appl Environ Microbiol; 1981 Jan; 41(1):312-4. PubMed ID: 6784670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1].
    Starovoĭtov II
    Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid- and chromosome-mediated dissimilation of naphthalene and salicylate in Pseudomonas putida PMD-1.
    Zuniga MC; Durham DR; Welch RA
    J Bacteriol; 1981 Sep; 147(3):836-43. PubMed ID: 7275935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial metabolism of chlorosalicylates: effect of prolonged subcultivation on constructed strains.
    Rubio MA; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1986 Jul; 145(2):123-5. PubMed ID: 3767568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of benzoate & salicylate by Aspergillus niger.
    Shailubhai K; Rao NN; Modi VV
    Indian J Exp Biol; 1982 Feb; 20(2):166-8. PubMed ID: 7106859
    [No Abstract]   [Full Text] [Related]  

  • 6. Catabolic enzyme levels in bacteria grown on binary and ternary substrate mixtures in continuous culture.
    Rudolph JM; Grady CP
    Biotechnol Bioeng; 2002 Jul; 79(2):188-99. PubMed ID: 12115435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Occurrence of the SAL+ phenotype in soil pseudomonads].
    Kosheleva IA; Sazonova OI; Izmalkova TY; Boronin AM
    Mikrobiologiia; 2014; 83(6):703-11. PubMed ID: 25941720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterisation of new Planococcus sp. strain able for aromatic hydrocarbons degradation.
    Labuzek S; Hupert-Kocurek KT; Skurnik M
    Acta Microbiol Pol; 2003; 52(4):395-404. PubMed ID: 15095927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characteristics of the key enzyme regulation of peripheral p-xylene metabolism in Pseudomonas aeruginosa].
    Gorlatova NV; Golovleva LA
    Mikrobiologiia; 1981; 50(6):1002-7. PubMed ID: 6799754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: regulation of tangential pathways.
    Williams PA; Catterall FA; Murray K
    J Bacteriol; 1975 Nov; 124(2):679-85. PubMed ID: 1184575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway.
    Reineke W; Jeenes DJ; Williams PA; Knackmuss HJ
    J Bacteriol; 1982 Apr; 150(1):195-201. PubMed ID: 7061393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate.
    Barnsley EA
    J Bacteriol; 1976 Feb; 125(2):404-8. PubMed ID: 1245462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
    Monticello DJ; Bakker D; Schell M; Finnerty WR
    Appl Environ Microbiol; 1985 Apr; 49(4):761-4. PubMed ID: 2988437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate.
    Cámara B; Bielecki P; Kaminski F; dos Santos VM; Plumeier I; Nikodem P; Pieper DH
    J Bacteriol; 2007 Mar; 189(5):1664-74. PubMed ID: 17172348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Oxidative dehalogenation of 2-chloro- and 2,4-dichlorobenzoates by Pseudomonas aeruginosa].
    Romanov VL; Grechkina GM; Adanin VM; Starovoĭtov II
    Mikrobiologiia; 1993; 62(5):887-96. PubMed ID: 8302207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Characterization of Inducible 'Reductase' Component of Benzoate Dioxygenase and Phthalate Isomer Dioxygenases from Pseudomonas aeruginosa strain PP4.
    Karandikar R; Badri A; Phale PS
    Appl Biochem Biotechnol; 2015 Sep; 177(2):318-33. PubMed ID: 26201480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning of salicylate hydroxylase gene and catechol 2,3-dioxygenase gene and sequencing of an intergenic sequence between the two genes of Pseudomonas putida KF715.
    Lee J; Min KR; Kim YC; Kim CK; Lim JY; Yoon H; Min KH; Lee KS; Kim Y
    Biochem Biophys Res Commun; 1995 Jun; 211(2):382-8. PubMed ID: 7794247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of aromatic compounds by Caulobacter crescentus.
    Chatterjee DK; Bourquin AW
    J Bacteriol; 1987 May; 169(5):1993-6. PubMed ID: 3571158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common induction and regulation of biphenyl, xylene/toluene, and salicylate catabolism in Pseudomonas paucimobilis.
    Furukawa K; Simon JR; Chakrabarty AM
    J Bacteriol; 1983 Jun; 154(3):1356-62. PubMed ID: 6343352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.