These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 678519)

  • 1. Photogenerated reagents for membrane labeling. 1. Phenylnitrene formed within the lipid bilayer.
    Bayley H; Knowles JR
    Biochemistry; 1978 Jun; 17(12):2414-9. PubMed ID: 678519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photogenerated reagents for membrane labeling. 2. Phenylcarbene and adamantylidene formed within the lipid bilayer.
    Bayley H; Knowles JR
    Biochemistry; 1978 Jun; 17(12):2420-3. PubMed ID: 678520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of lipophilic photoactivatable reagents to identify the lipid-embedded domains of membrane proteins.
    Gitler C; Bercovici T
    Ann N Y Acad Sci; 1980; 346():199-211. PubMed ID: 6930182
    [No Abstract]   [Full Text] [Related]  

  • 4. Photoreactive labeling of M13 coat protein in model membranes by use of a glycolipid probe.
    Hu VW; Wisnieski BJ
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5460-4. PubMed ID: 293655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying regions of membrane proteins in contact with phospholipid head groups: covalent attachment of a new class of aldehyde lipid labels to cytochrome c oxidase.
    McMillen DA; Volwerk JJ; Ohishi J; Erion M; Keana JF; Jost PC; Griffith OH
    Biochemistry; 1986 Jan; 25(1):182-93. PubMed ID: 3006751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photogenerated reagents for membranes: selective labeling of intrinsic membrane proteins in the human erythrocyte membrane.
    Bayley H; Knowles JR
    Biochemistry; 1980 Aug; 19(17):3883-92. PubMed ID: 7407075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labelling of egg phosphatidylcholine vesicles and myelin membrane with a photoreactive lipophilic reagent.
    Abu-Salah KM; Findlay JB
    Biochem J; 1977 Feb; 161(2):223-8. PubMed ID: 557976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved resonance Raman and computational investigation of the influence of 4-acetamido and 4-N-methylacetamido substituents on the chemistry of phenylnitrene.
    Xue J; Vyas S; Du Y; Luk HL; Chuang YP; But TY; Toy PH; Wang J; Winter AH; Phillips DL; Hadad CM; Platz MS
    J Phys Chem A; 2011 Jul; 115(26):7521-30. PubMed ID: 21648388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane partition of fatty acids and inhibition of T cell function.
    Anel A; Richieri GV; Kleinfeld AM
    Biochemistry; 1993 Jan; 32(2):530-6. PubMed ID: 8422363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoactive covalent labeling of membrane components from within the lipid core.
    Klip A; Gitler C
    Biochem Biophys Res Commun; 1974 Oct; 60(3):1155-62. PubMed ID: 4279663
    [No Abstract]   [Full Text] [Related]  

  • 12. Lipid-protein interactions in cytochrome c oxidase. A comparison of covalently attached phospholipid photo-spin-label with label free to diffuse in the bilayer.
    Griffith OH; McMillen DA; Keana JF; Jost PC
    Biochemistry; 1986 Feb; 25(3):574-84. PubMed ID: 3006763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of protein kinase C and other specific cytoplasmic proteins with phospholipid bilayers.
    Snoek GT; Rosenberg I; de Laat SW; Gitler C
    Biochim Biophys Acta; 1986 Aug; 860(2):336-44. PubMed ID: 3741855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective labeling of the hydrophobic core of membranes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine, a carbene-generating reagent.
    Brunner J; Semenza G
    Biochemistry; 1981 Dec; 20(25):7174-82. PubMed ID: 7317375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposomes as carriers of poorly water-soluble substrates: linear modelling of membrane systems with catalytic or binding sites of different facedness. Significance of experimental membrane partition coefficients and of kinetic and equilibrium parameters.
    Heirwegh KP; Meuwissen JA; Vermeir M; De Smedt H
    Biochem J; 1988 Aug; 254(1):101-8. PubMed ID: 2845942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fatty acids on self-assembly of soybean lecithin systems.
    Godoy CA; Valiente M; Pons R; Montalvo G
    Colloids Surf B Biointerfaces; 2015 Jul; 131():21-8. PubMed ID: 25938851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-dependent photolabelling of membrane hydrophobic core with 9-diazofluorene-2-butyric acid.
    Lala AK; Dixit RR; Koppaka V
    Biochim Biophys Acta; 1989 Jan; 978(2):333-6. PubMed ID: 2914144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility of carbon dioxide in lipid bilayer membranes and organic solvents.
    Simon SA; Gutknecht J
    Biochim Biophys Acta; 1980 Mar; 596(3):352-8. PubMed ID: 6767496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence assay for phospholipid membrane asymmetry.
    McIntyre JC; Sleight RG
    Biochemistry; 1991 Dec; 30(51):11819-27. PubMed ID: 1751498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrenesulfonyl azide as a fluorescent label for the study of protein-lipid boundaries of acetylcholine receptors in membranes.
    Gonzalez-Ros JM; Calvo-Fernandez P; Sator V; Martinez-Carrion M
    J Supramol Struct; 1979; 11(3):327-38. PubMed ID: 544921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.