These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 678522)
1. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II. Doukas AG; Aton B; Callender RH; Ebrey TG Biochemistry; 1978 Jun; 17(12):2430-5. PubMed ID: 678522 [TBL] [Abstract][Full Text] [Related]
2. Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. Ritter E; Zimmermann K; Heck M; Hofmann KP; Bartl FJ J Biol Chem; 2004 Nov; 279(46):48102-11. PubMed ID: 15322129 [TBL] [Abstract][Full Text] [Related]
3. Modeling the resonance Raman spectrum of a metarhodopsin: implications for the color of visual pigments. Sulkes M; Lewis A; Lemley AT; Cookingham R Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4266-70. PubMed ID: 1069982 [TBL] [Abstract][Full Text] [Related]
4. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin. Pande C; Deng H; Rath P; Callender RH; Schwemer J Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084 [TBL] [Abstract][Full Text] [Related]
5. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments. Koutalos Y; Ebrey TG; Gilson HR; Honig B Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250 [TBL] [Abstract][Full Text] [Related]
6. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base. Tsutsui K; Imai H; Shichida Y Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760 [TBL] [Abstract][Full Text] [Related]
7. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction. Sulkes M; Lewis A; Marcus MA Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380 [TBL] [Abstract][Full Text] [Related]
8. Analogue pigment studies of chromophore-protein interactions in metarhodopsins. Renk G; Crouch RK Biochemistry; 1989 Jan; 28(2):907-12. PubMed ID: 2540811 [TBL] [Abstract][Full Text] [Related]
9. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts. Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635 [TBL] [Abstract][Full Text] [Related]
10. Structural models of the photointermediates in the rhodopsin photocascade, lumirhodopsin, metarhodopsin I, and metarhodopsin II. Ishiguro M; Oyama Y; Hirano T Chembiochem; 2004 Mar; 5(3):298-310. PubMed ID: 14997522 [TBL] [Abstract][Full Text] [Related]
11. A vibrational analysis of rhodopsin and bacteriorhodopsin chromophore analogues: resonance Raman and infrared spectroscopy of chemically modified retinals and Schiff bases. Cookingham RE; Lewis A; Lemley AT Biochemistry; 1978 Oct; 17(22):4699-711. PubMed ID: 728379 [TBL] [Abstract][Full Text] [Related]
12. Resonance Raman studies of the primary photochemical event in visual pigments. Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman spectra of octopus acid and alkaline metarhodopsins. Kitagawa T; Tsuda M Biochim Biophys Acta; 1980 Jul; 624(1):211-7. PubMed ID: 7407234 [TBL] [Abstract][Full Text] [Related]
14. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy. Pan D; Mathies RA Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321 [TBL] [Abstract][Full Text] [Related]
15. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II. Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735 [TBL] [Abstract][Full Text] [Related]
16. Magic angle spinning NMR studies on the metarhodopsin II intermediate of bovine rhodopsin: evidence for an unprotonated Schiff base. Smith SO; de Groot H; Gebhard R; Lugtenburg J Photochem Photobiol; 1992 Dec; 56(6):1035-9. PubMed ID: 1337211 [TBL] [Abstract][Full Text] [Related]
17. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin. Pande AJ; Callender RH; Ebrey TG; Tsuda M Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069 [TBL] [Abstract][Full Text] [Related]
19. Effect of phospholipid and detergent on the Schiff base of cephalopod rhodopsin and metarhodopsin. Nashima K; Kawase N; Kito Y Biochim Biophys Acta; 1980 Dec; 626(2):390-6. PubMed ID: 7213657 [TBL] [Abstract][Full Text] [Related]
20. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition. Zvyaga TA; Min KC; Beck M; Sakmar TP J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]