These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 678525)

  • 1. Role of hypermodified bases in transfer RNA. Solution properties of dinucleoside monophosphates.
    Watts MT; Tinoco I
    Biochemistry; 1978 Jun; 17(12):2455-63. PubMed ID: 678525
    [No Abstract]   [Full Text] [Related]  

  • 2. The structure of the anticodon loop of tRNAPhe from yeast as deduced from spectroscopic studies on oligonucleotides.
    Maelicke A; von der Haar F; Sprinzl M; Cramer F
    Biopolymers; 1975 Jan; 14(1):155-71. PubMed ID: 1100138
    [No Abstract]   [Full Text] [Related]  

  • 3. On codon- anticodon interactions.
    Grosjean H; Chantrenne H
    Mol Biol Biochem Biophys; 1980; 32():347-67. PubMed ID: 7003350
    [No Abstract]   [Full Text] [Related]  

  • 4. Correct codon--anticodon base pairing at the 5'-anticodon position blocks covalent cross-linking between transfer ribonucleic acid and 16S RNA at the ribosomal P site.
    Ofengand J; Liou R
    Biochemistry; 1981 Feb; 20(3):552-9. PubMed ID: 7011367
    [No Abstract]   [Full Text] [Related]  

  • 5. Replacement and insertion of nucleotides at the anticodon loop of E. coli tRNAMetf by ligation of chemically synthesized ribooligonucleotides.
    Doi T; Yamane A; Matsugi J; Ohtsuka E; Ikehara M
    Nucleic Acids Res; 1985 May; 13(10):3685-97. PubMed ID: 3892480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution conformations of unmodified and A(37)N(6)-dimethylallyl modified anticodon stem-loops of Escherichia coli tRNA(Phe).
    Cabello-Villegas J; Winkler ME; Nikonowicz EP
    J Mol Biol; 2002 Jun; 319(5):1015-34. PubMed ID: 12079344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of transfer RNA.
    Kim SH
    Prog Nucleic Acid Res Mol Biol; 1976; 17():181-216. PubMed ID: 778921
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis and coding properties of dinucleoside diphosphates containing alky pyrimidines which are formed by the action of carcinogens on nucleic acids.
    Singer B; Pergolizzi RG; Grunberger D
    Nucleic Acids Res; 1979 Apr; 6(4):1709-19. PubMed ID: 156350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of an aminoacyl transfer RNA synthetase by a specific trinucleotide derived from the sequence of its cognate transfer RNA.
    Schoemaker HJ; Schimmel PR
    Biochemistry; 1977 Dec; 16(25):5461-4. PubMed ID: 336087
    [No Abstract]   [Full Text] [Related]  

  • 10. Codon--anticodon interaction in yeast tRNAPhe: an 1H NMR study.
    Geerdes HA; van Boom JH; Hilbers CW
    FEBS Lett; 1978 Apr; 88(1):27-32. PubMed ID: 346374
    [No Abstract]   [Full Text] [Related]  

  • 11. Import of nuclear deoxyribonucleic acid coded lysine-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria.
    Martin RP; Schneller JM; Stahl AJ; Dirheimer G
    Biochemistry; 1979 Oct; 18(21):4600-5. PubMed ID: 387075
    [No Abstract]   [Full Text] [Related]  

  • 12. The kinetics of binding of U-U-C-A to a dodecanucleotide anticodon fragment from yeast tRNA-Phe.
    Yoon K; Turner DH; Tinoco I; Haar F; Cramer F
    Nucleic Acids Res; 1976 Sep; 3(9):2233-41. PubMed ID: 787934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticodon loop sequences of transfer RNA Ser CGA and transfer RNA Ser IGA from the posterior silkgland of Bombyx mori L.
    Hentzen D; Garel JP
    Biochem Biophys Res Commun; 1976 Jul; 71(1):241-48. PubMed ID: 962917
    [No Abstract]   [Full Text] [Related]  

  • 14. The chemical synthesis of the anticodon loop of an eukaryotic initiator tRNA containing the hypermodified nucleoside N6-/N-threonylcarbonyl/-adenosine/t6A/1.
    Adamiak RW; Biała E; Grześkowiak K; Kierzek R; Kraszewski A; Markiewicz WT; Okupniak J; Stawiński J; Wiewiórowski M
    Nucleic Acids Res; 1978 Jun; 5(6):1889-905. PubMed ID: 673839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypermodified nucleosides in the anticodon of tRNALys stabilize a canonical U-turn structure.
    Sundaram M; Durant PC; Davis DR
    Biochemistry; 2000 Oct; 39(41):12575-84. PubMed ID: 11027137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal perturbation differential spectra of ribonucleic acids. II. Nearest neighbour interactions.
    Frechet D; Ehrlich R; Remy P; Gabarro-Arpa J
    Nucleic Acids Res; 1979 Dec; 7(7):1981-2001. PubMed ID: 395505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformation of aromatic-substituted dinucleoside monophosphates: an extension of the base-displacement theory of carcinogenesis.
    Brown HS; Shapiro R
    Biochemistry; 1977 Mar; 16(6):1229-35. PubMed ID: 849414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regions of tRNA important for binding to the ribosomal A and P sites.
    Sprinzl M; Wagner T; Lorenz S; Erdmann VA
    Biochemistry; 1976 Jul; 15(14):3031-9. PubMed ID: 782513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effect of complex formation with oligodeoxyribonucleotide ethyl phosphotriesters on transfer ribonucleic acid aminoacylation.
    Barrett JC; Miller PS; Ts'o PO
    Biochemistry; 1974 Nov; 13(24):4897-906. PubMed ID: 4373041
    [No Abstract]   [Full Text] [Related]  

  • 20. Theoretical and experimental approach to recognition of amino acid by tRNA and nucleotide II.
    Shimizu M; Yoneda S; Miura K; Miyoshi H; Watanabe K
    Nucleic Acids Symp Ser; 1984; (15):193-6. PubMed ID: 6522287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.