BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 678533)

  • 1. Glutathione-facilitated refolding of reduced, denatured bovine seminal ribonuclease: kinetics and characterization of products.
    Smith GK; D'Alessio G; Schaffer SW
    Biochemistry; 1978 Jun; 17(13):2633-8. PubMed ID: 678533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reacquisition of quaternary structure by fully reduced and denatured seminal ribonuclease.
    Parente A; D'Alessio G
    Eur J Biochem; 1985 Jun; 149(2):381-7. PubMed ID: 3996413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of reduced-denatured seminal ribonuclease: effect of modification at cysteines 31 and 32.
    Smith GK; Schaffer SW
    Arch Biochem Biophys; 1980 Aug; 203(1):282-7. PubMed ID: 6250486
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism of glutathione regeneration of reduced pancreatic ribonuclease a.
    Schaffer SW
    Int J Pept Protein Res; 1975; 7(2):179-84. PubMed ID: 1140890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociation of bovine seminal ribonuclease into catalytically active monomers by selective reduction and alkylation of the intersubunit disulfide bridges.
    D'Alessio G; Malorni MC; Parente A
    Biochemistry; 1975 Mar; 14(6):1116-22. PubMed ID: 1168065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of the four carboxyl terminal amino acid residues of bovine pancreatic ribonuclease A for structural folding.
    Fujii T; Ueno H; Hayashi R
    J Biochem; 2002 Feb; 131(2):193-200. PubMed ID: 11820931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refolding by disulfide isomerization: the mixed disulfide between ribonuclease T1 and glutathione as a model refolding substrate.
    Ruoppolo M; Freedman RB
    Biochemistry; 1995 Jul; 34(29):9380-8. PubMed ID: 7626608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers.
    Ahmed AK; Schaffer SW; Wetlaufer DB
    J Biol Chem; 1975 Nov; 250(21):8477-82. PubMed ID: 1194263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione-dependent pathways of refolding of RNase T1 by oxidation and disulfide isomerization: catalysis by protein disulfide isomerase.
    Ruoppolo M; Freedman RB; Pucci P; Marino G
    Biochemistry; 1996 Oct; 35(42):13636-46. PubMed ID: 8885843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monomeric selectively S-alkylated derivatives of seminal ribonuclease: preparation and properties.
    Parente A; Albanesi D; Garzillo AM; D'Alessio G
    Ital J Biochem; 1977; 26(6):451-66. PubMed ID: 564895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunological determination of the order of folding of portions of the molecule during air oxidation of reduced ribonuclease.
    Chavez LG; Scherage HA
    Biochemistry; 1977 May; 16(9):1849-56. PubMed ID: 66932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular dichroism evidence for the presence of burst-phase intermediates on the conformational folding pathway of ribonuclease A.
    Houry WA; Rothwarf DM; Scheraga HA
    Biochemistry; 1996 Aug; 35(31):10125-33. PubMed ID: 8756476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of superreactivity of cysteine residues 31 and 32 of seminal ribonuclease.
    Parente A; Merrifield B; Geraci G; D'Alessio G
    Biochemistry; 1985 Feb; 24(5):1098-104. PubMed ID: 4096891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partially oxidized active intermediates in refolding of reduced ribonuclease.
    Garel AT; Garel JR
    J Biol Chem; 1982 Apr; 257(8):4031-3. PubMed ID: 6279622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic stability of the two isoforms of bovine seminal ribonuclease.
    Giancola C; Del Vecchio P; De Lorenzo C; Barone R; Piccoli R; D'Alessio G; Barone G
    Biochemistry; 2000 Jul; 39(27):7964-72. PubMed ID: 10891077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of serine proteinases.
    Light A; Duda CT; Odorzynski TW; Moore WG
    J Cell Biochem; 1986; 31(1):19-26. PubMed ID: 3522609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimeric structure of seminal ribonuclease.
    D'Alessio G; Parente A; Guida C; Leone E
    FEBS Lett; 1972 Nov; 27(2):285-8. PubMed ID: 4664228
    [No Abstract]   [Full Text] [Related]  

  • 18. Selective reduction of seminal ribonuclease by glutathione.
    Smith GK; Schaffer SW
    Arch Biochem Biophys; 1979 Aug; 196(1):102-8. PubMed ID: 507798
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of mutagenic replacement of the carboxyl terminal amino acid, val124, on the properties and regeneration of bovine pancreatic ribonuclease A.
    Fujii T; Doi Y; Ueno H; Hayashi R
    J Biochem; 2000 May; 127(5):877-81. PubMed ID: 10788798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on the structure and stability of bovine seminal ribonuclease, its monomeric bis(S-carboxymethylated-31,32) derivative, and bovine pancreatic ribonuclease.
    Grandi C; D'Alessio G; Fontana A
    Biochemistry; 1979 Jul; 18(15):3413-20. PubMed ID: 465482
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.