These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 6785382)

  • 1. The sodium effect of Bacillus subtilis growth on aspartate.
    Whiteman P; Marks C; Freese E
    J Gen Microbiol; 1980 Aug; 119(2):493-504. PubMed ID: 6785382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity.
    Iijima T; Diesterhaft MD; Freese E
    J Bacteriol; 1977 Mar; 129(3):1440-7. PubMed ID: 403177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism.
    Harwood CR; Baumberg S
    J Gen Microbiol; 1977 May; 100(1):177-88. PubMed ID: 406353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of amino acids and their metabolic conversion into the compatible solute proline confers osmoprotection to Bacillus subtilis.
    Zaprasis A; Bleisteiner M; Kerres A; Hoffmann T; Bremer E
    Appl Environ Microbiol; 2015 Jan; 81(1):250-9. PubMed ID: 25344233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-Proline nutrition and catabolism in Staphylococcus saprophyticus.
    Deutch CE
    Antonie Van Leeuwenhoek; 2011 May; 99(4):781-93. PubMed ID: 21253822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aspartate 55 in the Na+/proline permease of Escherichia coli is essential for Na+-coupled proline uptake.
    Quick M; Jung H
    Biochemistry; 1997 Apr; 36(15):4631-6. PubMed ID: 9109673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)-pyrroline-5-carboxylate synthase.
    Baumgartner MR; Hu CA; Almashanu S; Steel G; Obie C; Aral B; Rabier D; Kamoun P; Saudubray JM; Valle D
    Hum Mol Genet; 2000 Nov; 9(19):2853-8. PubMed ID: 11092761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of glutamate to ornithine and proline: pyrroline-5-carboxylate, a possible modulator of arginine requirements.
    Jones ME
    J Nutr; 1985 Apr; 115(4):509-15. PubMed ID: 2858518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid synthesis from ornithine: enzymes and quantitative comparison in brain slices and detached retinas from rats and chicks.
    Matsuzawa T; Obara Y
    Brain Res; 1987 Jun; 413(2):314-9. PubMed ID: 3607480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of
    Gundlach J; Herzberg C; Hertel D; Thürmer A; Daniel R; Link H; Stülke J
    mBio; 2017 Jul; 8(4):. PubMed ID: 28679749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of ornithine as a precursor for proline in mammalian cells.
    Smith RJ; Phang JM
    J Cell Physiol; 1979 Mar; 98(3):475-81. PubMed ID: 438294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus subtilis 168 mutants resistant to arginine hydroxamate in the presence of ornithine or citrulline.
    Baumberg S; Mountain A
    J Gen Microbiol; 1984 May; 130(5):1247-52. PubMed ID: 6432946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport characteristics of N-acetyl-L-aspartate in rat astrocytes: involvement of sodium-coupled high-affinity carboxylate transporter NaC3/NaDC3-mediated transport system.
    Fujita T; Katsukawa H; Yodoya E; Wada M; Shimada A; Okada N; Yamamoto A; Ganapathy V
    J Neurochem; 2005 May; 93(3):706-14. PubMed ID: 15836629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A conserved aspartate residue, Asp187, is important for Na+-dependent proline binding and transport by the Na+/proline transporter of Escherichia coli.
    Quick M; Jung H
    Biochemistry; 1998 Sep; 37(39):13800-6. PubMed ID: 9753469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis.
    Whatmore AM; Chudek JA; Reed RH
    J Gen Microbiol; 1990 Dec; 136(12):2527-35. PubMed ID: 2127802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate carboxylase.
    Buxton RS
    J Gen Microbiol; 1978 Apr; 105(2):175-85. PubMed ID: 417147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex.
    Fisher SH; Magasanik B
    J Bacteriol; 1984 Apr; 158(1):55-62. PubMed ID: 6425269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response.
    Senthil-Kumar M; Mysore KS
    Plant Cell Environ; 2012 Jul; 35(7):1329-43. PubMed ID: 22321246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis.
    Gardan R; Rapoport G; Débarbouillé M
    J Mol Biol; 1995 Jun; 249(5):843-56. PubMed ID: 7540694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional regulation of degradation of aspartate transcarbamylase and of bulk protein in exponentially growing Bacillus subtilis cells.
    Bond RW; Field AS; Switzer RL
    J Bacteriol; 1983 Jan; 153(1):253-8. PubMed ID: 6401278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.