These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 6785388)

  • 21. Antistreptococcal activity of lactoperoxidase.
    Steele WF; Morrison M
    J Bacteriol; 1969 Feb; 97(2):635-9. PubMed ID: 5773015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro antiviral activity of hypothiocyanite against A/H1N1/2009 pandemic influenza virus.
    Cegolon L; Salata C; Piccoli E; Juarez V; Palu' G; Mastrangelo G; Calistri A
    Int J Hyg Environ Health; 2014 Jan; 217(1):17-22. PubMed ID: 23540488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleotide metabolism in Lactococcus lactis: salvage pathways of exogenous pyrimidines.
    Martinussen J; Andersen PS; Hammer K
    J Bacteriol; 1994 Mar; 176(5):1514-6. PubMed ID: 8113193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Permeabilization and lysis induced by bacteriocins and its effect on aldehyde formation by Lactococcus lactis.
    Martínez-Cuesta MC; Requena T; Peláez C
    Biotechnol Lett; 2006 Oct; 28(19):1573-80. PubMed ID: 16900333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Viability and metabolic capability are maintained by Escherichia coli, Pseudomonas aeruginosa, and Streptococcus lactis at very low adenylate energy charge.
    Barrette WC; Hannum DM; Wheeler WD; Hurst JK
    J Bacteriol; 1988 Aug; 170(8):3655-9. PubMed ID: 3136145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Components of a standardised olive leaf dry extract (Ph. Eur.) promote hypothiocyanite production by lactoperoxidase.
    Flemmig J; Rusch D; Czerwińska ME; Rauwald HW; Arnhold J
    Arch Biochem Biophys; 2014 May; 549():17-25. PubMed ID: 24657078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Study of the effect of amino acids on the biosynthesis of nisin and on the growth of Streptococcus lactis using the method of mathematical planning of experiments].
    Egorov NS; Baranova IP; Maksimov VN; Sil'vestrova OI
    Izv Akad Nauk SSSR Biol; 1973; (1):99-105. PubMed ID: 4218855
    [No Abstract]   [Full Text] [Related]  

  • 28. [Effect of KH2PO4 on Streptococcus lactis growth and nisin synthesis when the medium is kept at a constant pH].
    Kozlova IuI; Golikova TI; Baranova IP; Egorov NS
    Mikrobiologiia; 1979; 48(3):443-6. PubMed ID: 38379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739.
    Broxton P; Woodcock PM; Gilbert P
    J Appl Bacteriol; 1983 Jun; 54(3):345-53. PubMed ID: 6348014
    [No Abstract]   [Full Text] [Related]  

  • 30. The mechanism of the bacteriostatic action of tetrachlorosalicylanilide: a Membrane-active antibacterial compound.
    Hamilton WA
    J Gen Microbiol; 1968 Mar; 50(3):441-58. PubMed ID: 4870833
    [No Abstract]   [Full Text] [Related]  

  • 31. The antibiotic activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system in the calf abomasum.
    Reiter B; Marshall VM; Philips SM
    Res Vet Sci; 1980 Jan; 28(1):116-22. PubMed ID: 6990446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First ever isolation of bacterial prolipoprotein diacylglyceryl transferase in single step from Lactococcus lactis.
    Banerjee S; Sankaran K
    Protein Expr Purif; 2013 Feb; 87(2):120-8. PubMed ID: 23165241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Study of the genetic stability of expression plasmid vector pMG36e in host bacteria].
    Wang C; Zhang CW; Du J; Lü XY
    Wei Sheng Yan Jiu; 2005 Mar; 34(2):214-6. PubMed ID: 15952668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stimulation of cadaverine production by foodborne pathogens in the presence of Lactobacillus, Lactococcus, and Streptococcus spp.
    Kuley E; Balıkcı E; Özoğul I; Gökdogan S; Ozoğul F
    J Food Sci; 2012 Dec; 77(12):M650-8. PubMed ID: 22853653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactococcus lactis YfiA is necessary and sufficient for ribosome dimerization.
    Puri P; Eckhardt TH; Franken LE; Fusetti F; Stuart MC; Boekema EJ; Kuipers OP; Kok J; Poolman B
    Mol Microbiol; 2014 Jan; 91(2):394-407. PubMed ID: 24279750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria.
    Kuwano K; Tanaka N; Shimizu T; Nagatoshi K; Nou S; Sonomoto K
    Int J Antimicrob Agents; 2005 Nov; 26(5):396-402. PubMed ID: 16226432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron microscopy of Streptococcus lactis phage plaque margins.
    Moussavi-Jahed Z; Douglas J
    J Gen Virol; 1982 May; 60(Pt 1):147-51. PubMed ID: 6808084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abolition of herpes simplex cytopathic effect after treatment with peroxidase generated hypothiocyanite.
    Courtois P; van Beers D; de Foor M; Mandelbaum IM; Pourtois M
    J Biol Buccale; 1990 Jun; 18(2):71-4. PubMed ID: 2170348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypothiocyanite and host-microbe interactions.
    Meredith JD; Gray MJ
    Mol Microbiol; 2023 Mar; 119(3):302-311. PubMed ID: 36718113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of lactoperoxidase and thiocyanate on the growth of Streptococcus pyogenes and Streptococcus agalactiae in a chemically defined culture medium.
    Mickelson MN
    J Gen Microbiol; 1966 Apr; 43(1):31-43. PubMed ID: 5333458
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.