These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 6785652)

  • 1. Fortuitous oxidations by methane-utilizing bacteria.
    Stirling DI; Dalton H
    Nature; 1981 May; 291(5811):169-70. PubMed ID: 6785652
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparison of the substrate and electron-donor specificities of the methane mono-oxygenases from three strains of methane-oxidizing bacteria.
    Stirling DI; Colby J; Dalton H
    Biochem J; 1979 Jan; 177(1):361-4. PubMed ID: 106847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progresses of methanotrophs and methane monooxygenases].
    Han B; Su T; Li X; Xing X
    Sheng Wu Gong Cheng Xue Bao; 2008 Sep; 24(9):1511-9. PubMed ID: 19160830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylocella species are facultatively methanotrophic.
    Dedysh SN; Knief C; Dunfield PF
    J Bacteriol; 2005 Jul; 187(13):4665-70. PubMed ID: 15968078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state kinetic analysis of soluble methane mono-oxygenase from Methylococcus capsulatus (Bath).
    Green J; Dalton H
    Biochem J; 1986 May; 236(1):155-62. PubMed ID: 3098230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential.
    Higgins IJ; Best DJ; Hammond RC
    Nature; 1980 Aug; 286(5773):561-4. PubMed ID: 6772967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparative characteristics of the enzymatic systems of methane-utilizing bacteria that oxidize NH2OH and CH3OH].
    Sokolov IG; Romanovskaia VA; Shkurko IuV; Malashenko IuR
    Mikrobiologiia; 1980; 49(2):202-9. PubMed ID: 6771495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of metal-binding and other compounds on methane oxidation by two strains of Methylococcus capsulatus.
    Stirling DI; Dalton H
    Arch Microbiol; 1977 Jul; 114(1):71-6. PubMed ID: 410382
    [No Abstract]   [Full Text] [Related]  

  • 9. The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria.
    Dalton H
    Philos Trans R Soc Lond B Biol Sci; 2005 Jun; 360(1458):1207-22. PubMed ID: 16147517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facultative and obligate methanotrophs how to identify and differentiate them.
    Dedysh SN; Dunfield PF
    Methods Enzymol; 2011; 495():31-44. PubMed ID: 21419913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the hydroxylase of sMMO from Methylococcus capsulatus (Bath) by hydrogen peroxide.
    Jiang Y; Wilkins PC; Dalton H
    Biochim Biophys Acta; 1993 Apr; 1163(1):105-12. PubMed ID: 8476925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction and some properties of soluble methane monooxygenase of Methylosinus trichosporium IMV 3011.
    Yu C; Shen R; Xia C; Li S
    Ann N Y Acad Sci; 1998 Dec; 864():616-20. PubMed ID: 9928147
    [No Abstract]   [Full Text] [Related]  

  • 14. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane.
    Rosenzweig AC; Frederick CA; Lippard SJ; Nordlund P
    Nature; 1993 Dec; 366(6455):537-43. PubMed ID: 8255292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of low-molecular-weight halogenated hydrocarbons by methanotrophic bacteria.
    Hanson RS; Tsien HC; Tsuji K; Brusseau GA; Wackett LP
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):273-8. PubMed ID: 2094287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase.
    Paszczynski AJ; Paidisetti R; Johnson AK; Crawford RL; Colwell FS; Green T; Delwiche M; Lee H; Newby D; Brodie EL; Conrad M
    Biodegradation; 2011 Nov; 22(6):1045-59. PubMed ID: 21360114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of methane monooxygenase genes in mono lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure.
    Lin JL; Joye SB; Scholten JC; Schäfer H; McDonald IR; Murrell JC
    Appl Environ Microbiol; 2005 Oct; 71(10):6458-62. PubMed ID: 16204580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.
    Vavilin VA; Rytov SV; Shim N; Vogt C
    Isotopes Environ Health Stud; 2016 Jun; 52(3):185-202. PubMed ID: 26513269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cohn's Crenothrix is a filamentous methane oxidizer with an unusual methane monooxygenase.
    Stoecker K; Bendinger B; Schöning B; Nielsen PH; Nielsen JL; Baranyi C; Toenshoff ER; Daims H; Wagner M
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2363-7. PubMed ID: 16452171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Continuous biosynthesis of epoxypropane in a methanotrophic attached-films reactor].
    Xin JY; Cui JR; Chen JB; Li SB; Xia CG
    Sheng Wu Gong Cheng Xue Bao; 2002 Jan; 18(1):89-93. PubMed ID: 11977608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.