These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6785725)

  • 1. Three-state models of furanose pseudorotation.
    Olson WK
    Nucleic Acids Res; 1981 Mar; 9(5):1251-62. PubMed ID: 6785725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereochemical studies on nucleic acid analogues. I. Conformations of alpha-nucleosides and alpha-nucleotides: interconversion of sugar puckers via O4'-exo.
    Latha YS; Yathindra N
    Biopolymers; 1992 Mar; 32(3):249-69. PubMed ID: 1581546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational flexibility of the furanose ring in DNA and its dipole moment.
    Pechenaya VI
    J Biomol Struct Dyn; 1989 Oct; 7(2):381-8. PubMed ID: 2604911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab-inito quantum mechanical calculations of NMR chemical shifts in nucleic acids constituents. II. Conformational dependence of the 1H and 13C chemical shifts in the ribose.
    Giessner-Prettre C
    J Biomol Struct Dyn; 1985 Aug; 3(1):145-60. PubMed ID: 3917012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The free energy landscape of pseudorotation in 3'-5' and 2'-5' linked nucleic acids.
    Li L; Szostak JW
    J Am Chem Soc; 2014 Feb; 136(7):2858-65. PubMed ID: 24499340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxyribose conformation in [d(GTATATAC)]2: evaluation of sugar pucker by simulation of double-quantum-filtered COSY cross-peaks.
    Schmitz U; Zon G; James TL
    Biochemistry; 1990 Mar; 29(9):2357-68. PubMed ID: 2337605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational studies of gas-phase ribose and 2-deoxyribose by density functional, second order PT and multi-level method calculations: the pyranoses, furanoses, and open-chain structures.
    Szczepaniak M; Moc J
    Carbohydr Res; 2014 Jan; 384():20-36. PubMed ID: 24342347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dimensions and shapes of the furanose rings in nucleic acids.
    Arnott S; Hukins DW
    Biochem J; 1972 Nov; 130(2):453-65. PubMed ID: 4664573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling furanose ring dynamics in DNA.
    Meints GA; Karlsson T; Drobny GP
    J Am Chem Soc; 2001 Oct; 123(41):10030-8. PubMed ID: 11592881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of monovalent cations Li+, Na+, K+, NH4+, Rb+ and Cs+ on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation.
    Tajmir-Riahi HA; Messaoudi S
    J Biomol Struct Dyn; 1992 Oct; 10(2):345-65. PubMed ID: 1334674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modeling studies of ribonuclease T1-guanosine monophosphate complexes.
    Balaji PV; Saenger W; Rao VS
    Biopolymers; 1990; 30(3-4):257-72. PubMed ID: 2177661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Significance of Conformational Preferences and Ribose-Ring-Puckering of Hyper Modified Nucleotide 5'-Monophosphate 2-Methylthio Cyclic N
    Dound AS; Fandilolu PM; Sonawane KD
    Cell Biochem Biophys; 2022 Dec; 80(4):665-680. PubMed ID: 35965304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance studies of 2'- and 3'-ribonucleotide structures in solution.
    Davies DB; Danyluk SS
    Biochemistry; 1975 Feb; 14(3):543-54. PubMed ID: 1111570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic cycle between DNA and RNA constituents for conformation of the sugar ring from nuclear magnetic resonance study.
    Remin M
    J Biomol Struct Dyn; 1997 Oct; 15(2):251-64. PubMed ID: 9399153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures.
    Yokoyama S; Inagaki F; Miyazawa T
    Biochemistry; 1981 May; 20(10):2981-8. PubMed ID: 6166319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational studies of nucleic acids. II. The conformational energetics of commonly occurring nucleosides.
    Pearlman DA; Kim SH
    J Biomol Struct Dyn; 1985 Aug; 3(1):99-125. PubMed ID: 3917020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of deoxyguanylic acid with alkaline earth metal ions. Evidence for the deoxyribose C3'-endo/anti, O4'-endo/anti and C2'-endo/anti conformational transitions.
    Tajmir-Riahi HA
    J Biomol Struct Dyn; 1990 Oct; 8(2):303-13. PubMed ID: 2268405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-nucleotide interactions: crystal structures of alkali (Li+, Na+, K+) and alkaline earth (Ca2+, Mg2+) metal complexes of adenosine 2'-monophosphate.
    Padiyar GS; Seshadri TP
    J Biomol Struct Dyn; 1998 Feb; 15(4):803-21. PubMed ID: 9514255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman diagnosis of nucleic acid structure: sugar-puckering and glycosidic conformation in the guanosine moiety.
    Nishimura Y; Tsuboi M; Nakano T; Higuchi S; Sato T; Shida T; Uesugi S; Ohtsuka E; Ikehara M
    Nucleic Acids Res; 1983 Mar; 11(5):1579-88. PubMed ID: 6186993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar conformational effects on the photochemistry of thymidylyl(3'-5')thymidine.
    Ostrowski T; Maurizot JC; Adeline MT; Fourrey JL; Clivio P
    J Org Chem; 2003 Aug; 68(17):6502-10. PubMed ID: 12919010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.