These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6785828)

  • 21. [Changes of the activity and localization of acid phosphatase, alkaline phosphatase and desoxyribonuclease II in motoric cells of the anterior horn of the spinal cord in rabbits in acute hydrogen sulfide poisoning].
    Kamiński M; Mikolajczyk P
    Med Pr; 1967; 18(1):42-6. PubMed ID: 5182759
    [No Abstract]   [Full Text] [Related]  

  • 22. Developmental changes in the distribution of gamma-aminobutyric acid-immunoreactive neurons in the embryonic chick lumbosacral spinal cord.
    Antal M; Berki AC; Horváth L; O'Donovan MJ
    J Comp Neurol; 1994 May; 343(2):228-36. PubMed ID: 8027440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Acid phosphatase in the nerve tissue exposed to local vibration].
    Dikshteĭn EA; Volynskiĭ AV
    Arkh Patol; 1979; 41(11):64-8. PubMed ID: 518367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Preliminary separation and identification of the neurotrophic substances from dorsal spinal cord of chicken embryos].
    Liu YB; Xue QS; Xiao YP; Wang XR
    Sheng Li Xue Bao; 2001 Aug; 53(4):321-4. PubMed ID: 11930214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental expression of glycine immunoreactivity and its colocalization with GABA in the embryonic chick lumbosacral spinal cord.
    Berki AC; O'Donovan MJ; Antal M
    J Comp Neurol; 1995 Nov; 362(4):583-96. PubMed ID: 8636469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An ultrastructural study of acid phosphatase activity of rat ventral motor horn cells with observations on the effects of hyperbaric oxygen.
    McKeever P; Balentine JD
    Lab Invest; 1973 Dec; 29(6):633-41. PubMed ID: 4763724
    [No Abstract]   [Full Text] [Related]  

  • 28. Histoenzymology of the developing rat spinal cord.
    Schoenen J
    Neuropathol Appl Neurobiol; 1978; 4(1):37-46. PubMed ID: 683457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The cell coat in the neuropil of the chick spinal cord during development.
    Alfei L; Caravita S; Fiorentini P
    Microsc Acta; 1974 Nov; 76(3):216-23. PubMed ID: 4141476
    [No Abstract]   [Full Text] [Related]  

  • 30. Histochemistry of synapses.
    Csillik B; Knyihar E
    Cell Mol Biol Incl Cyto Enzymol; 1977; 22(3-4):285-92. PubMed ID: 610850
    [No Abstract]   [Full Text] [Related]  

  • 31. Embryonic development of choline acetyltransferase and nitric oxide synthase in the spinal cord of pigeons and chickens with special reference to the superficial dorsal horn.
    Necker R
    Anat Embryol (Berl); 2005 Sep; 210(2):145-54. PubMed ID: 16044318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An optimized lead capture electronhistochemical technique for the demonstration of lysosomal and non lysosomal acid phosphatase activity in nervous tissue.
    Wilks PN
    Med Lab Sci; 1980 Mar; 37(2):149-64. PubMed ID: 7401951
    [No Abstract]   [Full Text] [Related]  

  • 33. Acid phosphatase active fluoride sensitive neurons in the white matter of the spinal cord.
    Karcsu S; Tóth L; Kása P
    Acta Histochem; 1972; 42(1):121-5. PubMed ID: 4340766
    [No Abstract]   [Full Text] [Related]  

  • 34. The development of interneurons in the chick embryo spinal cord following in vivo treatment with retinoic acid.
    Shiga T; Gaur VP; Yamaguchi K; Oppenheim RW
    J Comp Neurol; 1995 Sep; 360(3):463-74. PubMed ID: 8543652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Midkine expression in rat spinal motor neurons following sciatic nerve injury.
    Sakakima H; Yoshida Y; Kadomatsu K; Yuzawa Y; Matsuo S; Muramatsu T
    Brain Res Dev Brain Res; 2004 Nov; 153(2):251-60. PubMed ID: 15527893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell adhesion molecules regulate guidance of dorsal root ganglion axons in the marginal zone and their invasion into the mantle layer of embryonic spinal cord.
    Shiga T; Lustig M; Grumet M; Shirai T
    Dev Biol; 1997 Dec; 192(1):136-48. PubMed ID: 9405103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cultivation conditions influencing de novo development of nerve-muscle junctions in vitro.
    Tolar M
    Physiol Bohemoslov; 1980; 29(5):393-9. PubMed ID: 6449709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative analysis of NADPH-diaphorase positive neurons in the rat, rabbit and pheasant thoracic spinal cord. A histochemical study.
    Kluchová D; Rybárová S; Miklosová M; Lovásová K; Schmidtová K; Dorko F
    Eur J Histochem; 2001; 45(3):239-48. PubMed ID: 11759810
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dorsal root ganglion regulates the transient ERK activation in the dorsal horn of the spinal cord during development.
    Kato T; Ohtani-Kaneko R; Shiga T
    Neurosci Res; 2007 Aug; 58(4):402-5. PubMed ID: 17532077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [pH dependent intracellular distribution of acid phosphatase in the spinal cord of the chicken, Gallus domesticus].
    Blank M; Oehlschlägel R
    Histochemie; 1966; 6(3):187-208. PubMed ID: 5988132
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.