BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6786717)

  • 1. Anaerobic co-oxidation of acetate and glucose by citrobacter intermedius and a species of Pseudomonas.
    Brosseau JD; Zajic JE
    Can J Microbiol; 1980 Dec; 26(12):1503-5. PubMed ID: 6786717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species.
    Thomas KL; Lloyd D; Boddy L
    FEMS Microbiol Lett; 1994 May; 118(1-2):181-6. PubMed ID: 8013877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 fixation and metabolic control in Pseudomonas saccharophila.
    Donawa AL; Ishaque M; Aleem MI
    Can J Microbiol; 1973 Oct; 19(10):1243-50. PubMed ID: 4762799
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydrogen formation by an arsenate-reducing Pseudomonas putida, isolated from arsenic-contaminated groundwater in West Bengal, India.
    Freikowski D; Winter J; Gallert C
    Appl Microbiol Biotechnol; 2010 Dec; 88(6):1363-71. PubMed ID: 20821202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of (13)CO2 during rest and exercise after [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO3 infusions.
    Trimmer JK; Casazza GA; Horning MA; Brooks GA
    Am J Physiol Endocrinol Metab; 2001 Oct; 281(4):E683-92. PubMed ID: 11551844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration.
    Macy JM; Michel TA; Kirsch DG
    FEMS Microbiol Lett; 1989 Oct; 52(1-2):195-8. PubMed ID: 2513248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 fixation during protein synthesis from ammonium acetate.
    KORNBERG HL
    Biochim Biophys Acta; 1956 Oct; 22(1):208-10. PubMed ID: 13373876
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.
    Błaszczyk M
    Acta Microbiol Pol; 1983; 32(1):65-71. PubMed ID: 6194668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of acetate, glucose, or glycine to carbon dioxide in mice exhibiting the hereditary obesity syndrome.
    HUGHES AM; TOLBERT BM
    J Biol Chem; 1958 Mar; 231(1):339-45. PubMed ID: 13538973
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of cancer and fasting on oxidation of labeled acetate, glucose and glycine to C1402.
    HARMON DH; KIRK MR; TOLBERT BM
    Am J Physiol; 1959 Feb; 196(2):265-8. PubMed ID: 13627157
    [No Abstract]   [Full Text] [Related]  

  • 11. Carbon and energy balances of glucose fermentation with hydrogenproducing bacterium Citrobacter amalonaticus Y19.
    Oh YK; Park S; Seol EH; Kim SH; Kim MS; Hwang JW; Ryu DD
    J Microbiol Biotechnol; 2008 Mar; 18(3):532-8. PubMed ID: 18388473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial strains from human feces that reduce CO2 to acetic acid.
    Wolin MJ; Miller TL
    Appl Environ Microbiol; 1993 Nov; 59(11):3551-6. PubMed ID: 8285662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the growth of Pseudomonas putida LP on lipoate and its analogues: transport, oxidation, sulphur source, and enzyme induction.
    Shih JC; Rozo ML; Wright LD; McCormick DB
    J Gen Microbiol; 1975 Feb; 86(2):217-27. PubMed ID: 1089758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movements of radioactive carbon dioxide within the animal body during oxidation of 14C-labelled substances.
    COXON RV; ROBINSON RJ
    J Physiol; 1959 Oct; 147(3):487-510. PubMed ID: 13812528
    [No Abstract]   [Full Text] [Related]  

  • 15. Predominant contribution of syntrophic acetate oxidation to thermophilic methane formation at high acetate concentrations.
    Hao LP; Lü F; He PJ; Li L; Shao LM
    Environ Sci Technol; 2011 Jan; 45(2):508-13. PubMed ID: 21162559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of C2 compounds in microorganisms. 2. The effect of carbon dioxide on the incorporation of [14C] acetate by acetate-grown Pseudomonas KB1.
    KORNBERG HL; QUAYLE JR
    Biochem J; 1958 Mar; 68(3):542-9. PubMed ID: 13522657
    [No Abstract]   [Full Text] [Related]  

  • 17. Enzyme reactions involved in anaerobic cyclohexanol metabolism by a denitrifying Pseudomonas species.
    Dangel W; Tschech A; Fuchs G
    Arch Microbiol; 1989; 152(3):271-9. PubMed ID: 2505723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetate oxidation coupled to Fe(iii) reduction in hyperthermophilic microorganisms.
    Tor JM; Kashefi K; Lovley DR
    Appl Environ Microbiol; 2001 Mar; 67(3):1363-5. PubMed ID: 11229932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of 2-oxoglutarate and biotin in the release of amino acids by Citrobacter intermedius C3.
    Vives-Rego J; Jofre J; Imperial J; Ripoll J; Parés R
    Rev Esp Fisiol; 1979 Dec; 35(4):475-80. PubMed ID: 542710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling glucose fermentation and homoacetogenesis for elevated acetate production: Experimental and mathematical approaches.
    Ni BJ; Liu H; Nie YQ; Zeng RJ; Du GC; Chen J; Yu HQ
    Biotechnol Bioeng; 2011 Feb; 108(2):345-53. PubMed ID: 20803563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.