BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 6787017)

  • 1. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes.
    Reizer J; Saier MH
    J Bacteriol; 1983 Oct; 156(1):236-42. PubMed ID: 6413489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of beta-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism.
    Reizer J; Panos C
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5497-501. PubMed ID: 7001481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of beta-galactoside transport and accumulation in heterofermentative lactic acid bacteria.
    Romano AH; Brino G; Peterkofsky A; Reizer J
    J Bacteriol; 1987 Dec; 169(12):5589-96. PubMed ID: 3680171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms.
    Cook GM; Kearns DB; Russell JB; Reizer J; Saier MH
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2261-9. PubMed ID: 7496538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis.
    Thompson J; Turner KW; Thomas TD
    J Bacteriol; 1978 Mar; 133(3):1163-74. PubMed ID: 417061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis.
    Thompson J; Thomas TD
    J Bacteriol; 1977 May; 130(2):583-95. PubMed ID: 122509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo.
    Thompson J
    J Bacteriol; 1979 Dec; 140(3):774-85. PubMed ID: 118155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP.
    Reizer J; Novotny MJ; Panos C; Saier MH
    J Bacteriol; 1983 Oct; 156(1):354-61. PubMed ID: 6225770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactose transport systems in Streptococcus lactis.
    Thompson J
    J Bacteriol; 1980 Nov; 144(2):683-91. PubMed ID: 6776094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis.
    Park YH; McKay LL
    J Bacteriol; 1982 Feb; 149(2):420-5. PubMed ID: 6799488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-D-glucose uncouples energy production from growth.
    Thompson J; Chassy BM
    J Bacteriol; 1982 Sep; 151(3):1454-65. PubMed ID: 6286601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory functions of serine-46-phosphorylated HPr in Lactococcus lactis.
    Monedero V; Kuipers OP; Jamet E; Deutscher J
    J Bacteriol; 2001 Jun; 183(11):3391-8. PubMed ID: 11344147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of lactose-fermenting revertants from lactose-negative Streptococcus lactis C2 mutants.
    Cords BR; McKay LL
    J Bacteriol; 1974 Sep; 119(3):830-9. PubMed ID: 4368487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.
    Thompson J; Chassy BM
    J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. beta-D-phosphogalactoside galactohydrolase of Streptococcus faecalis and the inhibition of its synthesis by glucose.
    Heller K; Röschenthaler R
    Can J Microbiol; 1978 May; 24(5):512-9. PubMed ID: 418859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis.
    Ye JJ; Neal JW; Cui X; Reizer J; Saier MH
    J Bacteriol; 1994 Jun; 176(12):3484-92. PubMed ID: 8206825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J; Chassy BM; Egan W
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.