These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 679044)

  • 21. Differential projection of the sural nerve to early and late recruited human tibialis anterior motor units: change of recruitment gain.
    Nielsen J; Kagamihara Y
    Acta Physiol Scand; 1993 Apr; 147(4):385-401. PubMed ID: 8493875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord.
    Minassian K; Persy I; Rattay F; Dimitrijevic MR; Hofer C; Kern H
    Muscle Nerve; 2007 Mar; 35(3):327-36. PubMed ID: 17117411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of real and sham whole-body mechanical vibration on spinal excitability at rest and during muscle contraction.
    Hortobágyi T; Rider P; DeVita P
    Scand J Med Sci Sports; 2014 Dec; 24(6):e436-447. PubMed ID: 24646403
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors.
    Milosevic M; Masugi Y; Obata H; Sasaki A; Popovic MR; Nakazawa K
    Exp Brain Res; 2019 Feb; 237(2):467-476. PubMed ID: 30460394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reaction time and spinal excitability in a simple reaction time task.
    Michie PT; Clarke AM; Sinden JD; Glue LC
    Physiol Behav; 1976 Mar; 16(3):311-5. PubMed ID: 825890
    [No Abstract]   [Full Text] [Related]  

  • 26. Behavior of the long-latency stretch reflex prior to voluntary movement.
    Hallett M; Bielawski M; Marsden CD
    Brain Res; 1981 Aug; 219(1):178-85. PubMed ID: 7260626
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel facilitatory reflex pathways from the foot and hip to flexors and extensors in the injured human spinal cord.
    Knikou M; Kay E; Schmit BD
    Exp Neurol; 2007 Jul; 206(1):146-58. PubMed ID: 17543951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Comparative investigation of somatosensory spinal and cortical evoked potentials in children (author's transl)].
    Sauer M; Schenck E
    Arch Psychiatr Nervenkr (1970); 1977 Jul; 223(4):295-308. PubMed ID: 901158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cervical somato-sensory evoked responses in man.
    Matthews WB; Beauchamp M; Small DG
    Nature; 1974 Nov; 252(5480):230-2. PubMed ID: 4421039
    [No Abstract]   [Full Text] [Related]  

  • 30. Exteroceptive influences on lower limb motoneurons in man: spinal and supraspinal contributions.
    Delwaide PJ; Crenna P
    Adv Neurol; 1983; 39():797-807. PubMed ID: 6660124
    [No Abstract]   [Full Text] [Related]  

  • 31. Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia.
    Thompson FJ; Reier PJ; Uthman B; Mott S; Fessler RG; Behrman A; Trimble M; Anderson DK; Wirth ED
    J Neurotrauma; 2001 Sep; 18(9):931-45. PubMed ID: 11565604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the methods employed to record and measure the human soleus H-reflex.
    Knikou M; Taglianetti C
    Somatosens Mot Res; 2006; 23(1-2):55-62. PubMed ID: 16846960
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex.
    Burke D; Gandevia SC; McKeon B
    J Neurophysiol; 1984 Sep; 52(3):435-48. PubMed ID: 6090608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diurnal H-reflex variation in mice.
    Carp JS; Tennissen AM; Chen XY; Wolpaw JR
    Exp Brain Res; 2006 Jan; 168(4):517-28. PubMed ID: 16151781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Presynaptic control of group Ia afferents in relation to acquisition of a visuo-motor skill in healthy humans.
    Perez MA; Lungholt BK; Nielsen JB
    J Physiol; 2005 Oct; 568(Pt 1):343-54. PubMed ID: 16051628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcortical somatosensory evoked potentials after posterior tibial nerve stimulation in children.
    Boor R; Li L; Goebel B; Reitter B
    Brain Dev; 2008 Sep; 30(8):493-8. PubMed ID: 18606513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative studies of somatosensory cerebral and spinal evoked responses with F-wave and H-reflex latencies.
    Siafakas A; Panayiotopoulos CP; Scarpalezos S
    Electromyogr Clin Neurophysiol; 1982; 22(1-2):55-64. PubMed ID: 7067664
    [No Abstract]   [Full Text] [Related]  

  • 38. M-wave, H- and V-reflex recruitment curves during maximal voluntary contraction.
    Racinais S; Maffiuletti NA; Girard O
    J Clin Neurophysiol; 2013 Aug; 30(4):415-21. PubMed ID: 23912583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nerve specific modulation of somatosensory inflow to cerebral cortex during submaximal sustained contraction in first dorsal interosseous muscle.
    Nakajima T; Endoh T; Sakamoto M; Komiyama T
    Brain Res; 2005 Aug; 1053(1-2):146-53. PubMed ID: 16026769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Posterior tibial somatosensory evoked potentials a comparative study of responses elicited by transcutaneous and percutaneous stimulation at the popliteal fossa.
    Bamford CR; Graeme K; Guthkelch AN; Dzioba R
    Electromyogr Clin Neurophysiol; 1995 Dec; 35(8):463-9. PubMed ID: 8773206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.