BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6790528)

  • 1. Surprising differences in substrate selectivity and other properties of systems A and ASC between rat hepatocytes and the hepatoma cell line HTC.
    Handlogten ME; Garcia-Cañero R; Lancaster KT; Christensen HN
    J Biol Chem; 1981 Aug; 256(15):7905-9. PubMed ID: 6790528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incomplete correspondence between repressive and substrate action by amino acids on transport systems A and N in monolayered rat hepatocytes.
    Handlogten ME; Kilberg MS; Christensen HN
    J Biol Chem; 1982 Jan; 257(1):345-8. PubMed ID: 7053375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic transport system interconverted by protonation from service for neutral to service for anionic amino acids.
    Makowske M; Christensen HN
    J Biol Chem; 1982 Dec; 257(24):14635-8. PubMed ID: 7174659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of system N in fetal hepatocytes and in related cell lines.
    Vadgama JV; Christensen HN
    J Biol Chem; 1983 May; 258(10):6422-9. PubMed ID: 6304040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of amino acid transport in rat hepatocytes and hepatoma cells by PCMBS.
    Chiles TC; Dudeck-Collart KL; Kilberg MS
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C340-5. PubMed ID: 2844094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression, derepression, transinhibition, and trans-stimulation of amino acid transport in rat hepatocytes and four rat hepatoma cell lines in culture.
    Kelley DS; Potter VR
    J Biol Chem; 1979 Jul; 254(14):6691-7. PubMed ID: 447744
    [No Abstract]   [Full Text] [Related]  

  • 7. Cysteine as a system-specific substrate for transport system ASC in rat hepatocytes.
    Kilberg MS; Christensen HN; Handlogten ME
    Biochem Biophys Res Commun; 1979 May; 88(2):744-51. PubMed ID: 465067
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis and transport applications of 3-aminobicyclo[3.2.1] octane-3-carboxylic acids.
    Christensen HN; Handlogten ME; Vadgama JV; de la Cuesta E; Ballesteros P; Trigo GG; Avendaño C
    J Med Chem; 1983 Oct; 26(10):1374-8. PubMed ID: 6413692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutral amino acid transport. Characterization of the A and L systems in isolated rat hepatocytes.
    Le Cam A; Freychet P
    J Biol Chem; 1977 Jan; 252(1):148-56. PubMed ID: 833114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. System A transport activity in normal rat hepatocytes and transformed liver cells: substrate protection from inactivation by sulfhydryl-modifying reagents.
    Chiles TC; Kilberg MS
    J Cell Physiol; 1986 Dec; 129(3):321-8. PubMed ID: 3023402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of L-threonine and L-glutamine transport in murine P388 leukemia cells in vitro. Presence of an N-like amino acid transport system.
    Lazarus P; Panasci LC
    Biochim Biophys Acta; 1986 Apr; 856(3):488-95. PubMed ID: 3083865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of glucagon-stimulated system A amino acid transport activity in rat liver plasma membrane vesicles.
    Schenerman MA; Kilberg MS
    Biochim Biophys Acta; 1986 Apr; 856(3):428-36. PubMed ID: 3964688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Na(+)-dependent system A and ASC-independent amino acid transport system stimulated by glucagon in rat hepatocytes.
    Lim SK; Cynober L; De Bandt JP; Aussel C
    Cell Biol Int; 1999; 23(1):7-12. PubMed ID: 10527543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs.
    Kilberg MS; Handlogten ME; Christensen HN
    J Biol Chem; 1980 May; 255(9):4011-9. PubMed ID: 7372663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic amino acid transport into cultured animal cells. II. Transport system barely perceptible in ordinary hepatocytes, but active in hepatoma cell lines.
    White MF; Christensen HN
    J Biol Chem; 1982 Apr; 257(8):4450-7. PubMed ID: 7068644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid transport systems in the human hepatoma cell line Hep G2.
    Goenner S; Boutron A; Soni T; Lemonnier A; Moatti N
    Biochem Biophys Res Commun; 1992 Nov; 189(1):472-9. PubMed ID: 1333197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-dependent adaptive regulation and trans-inhibition of System A-mediated amino acid transport. Studies using rat hepatoma plasma membrane vesicles.
    Fong AD; Handlogten ME; Kilberg MS
    Biochim Biophys Acta; 1990 Mar; 1022(3):325-32. PubMed ID: 1690572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous regulation of amino acid influx and efflux by system A in the hepatoma cell HTC. Ouabain simulates the starvation-induced derepression of system A amino acid transport.
    White MF; Christensen HN
    J Biol Chem; 1983 Jul; 258(13):8028-38. PubMed ID: 6863276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat hepatoma cells express novel transport systems for glutamine and glutamate in addition to those present in normal rat hepatocytes.
    McGivan JD
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):255-60. PubMed ID: 9461518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucocorticoid inhibition of two discrete glycine transport systems in rat hepatoma cells.
    Reichberg SB; Gelehrter TD
    J Biol Chem; 1980 Jun; 255(12):5708-14. PubMed ID: 7380834
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.