These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6790911)

  • 1. The action of the notch locus in Drosophila melanogaster. I. Effects of the notch8 deficiency on mitochondrial enzymes.
    Thörig GE; Heinstra PW; Scharloo W
    Mol Gen Genet; 1981; 182(1):31-8. PubMed ID: 6790911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The action of the notchlocus in Drosophila melanogaster. II. Biochemical effects of recessive lethals on mitochondrial enzymes.
    Thörig GE; Heinstra PW; Scharloo W
    Genetics; 1981 Sep; 99(1):65-74. PubMed ID: 6804303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of recessive lethal Notch mutations of Drosophila melanogaster on flavoprotein enzyme activities whose inhibitions cause Notch-like phenocopies.
    Thörig GE; Heinstra PW; de Ruiter BL; Scharloo W
    Biochem Genet; 1987 Feb; 25(1-2):7-25. PubMed ID: 3107544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The alpha-glycerophosphate cycle in Drosophila melanogaster. IV. Metabolic, ultrastructural, and adaptive consequences of alphaGpdh-l "null" mutations.
    O'Brien SJ; Shimada Y
    J Cell Biol; 1974 Dec; 63(3):864-82. PubMed ID: 4154945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cytogenetic analysis of the chromosomal region surrounding the alpha-glycerophosphate dehydrogenase locus of Drosophila melanogaster.
    Kotarski MA; Pickert S; MacIntyre RJ
    Genetics; 1983 Oct; 105(2):371-86. PubMed ID: 6414883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reconstitution of L-3-glycerophosphate-cytochrome c oxidoreductase from L-3-glycerophosphate dehydrogenase, ubiquinone-10 and ubiquinol-cytochrome c oxidoreductase.
    Cottingham IR; Ragan CI
    Biochem J; 1980 Oct; 192(1):19-31. PubMed ID: 6272693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmental aneuploidy as a probe for structural genes in Drosophila: mitochondrial membrane enzymes.
    O'Brien SJ; Gethmann RC
    Genetics; 1973 Sep; 75(1):155-67. PubMed ID: 4202771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria.
    Ackrell BA; Maguire JJ; Dallman PR; Kearney EB
    J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the activity of succinate, NADH, choline, and alpha-glycerophosphate dehydrogenases.
    Singer TP
    Methods Biochem Anal; 1974; 22():123-75. PubMed ID: 4155042
    [No Abstract]   [Full Text] [Related]  

  • 10. A genetic analysis of the alpha-glycerophosphate oxidase locus in Drosophila melanogaster.
    Davis MB; MacIntyre RJ
    Genetics; 1988 Nov; 120(3):755-66. PubMed ID: 3147213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The branched mitochondrial respiratory chain from Debaryomyces hansenii: components and supramolecular organization.
    Cabrera-Orefice A; Chiquete-Félix N; Espinasa-Jaramillo J; Rosas-Lemus M; Guerrero-Castillo S; Peña A; Uribe-Carvajal S
    Biochim Biophys Acta; 2014 Jan; 1837(1):73-84. PubMed ID: 23933018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of inhibition of NADH oxidase by ubiquinone-3.
    Landi L; Pasquali P; Cabrini L; Sechi AM; Lenaz G
    J Bioenerg Biomembr; 1984 Apr; 16(2):153-66. PubMed ID: 6536673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADH oxidase and fumarate reductase of Ancylostoma ceylanicum.
    Goyal N; Gupta S; Katiyar JC; Srivastava VM
    Int J Parasitol; 1991 Oct; 21(6):673-6. PubMed ID: 1757194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methotrexate: studies on the cellular metabolism. I. Effect on mitochondrial oxygen uptake and oxidative phosphorylation.
    Yamamoto N; Oliveira MB; Campello Ade P; Lopes LC; Klüppel ML
    Cell Biochem Funct; 1988 Jan; 6(1):61-6. PubMed ID: 2832095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology.
    Lenaz G
    IUBMB Life; 2001; 52(3-5):159-64. PubMed ID: 11798028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy.
    Hoppel CL; Kerr DS; Dahms B; Roessmann U
    J Clin Invest; 1987 Jul; 80(1):71-7. PubMed ID: 3110216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle.
    Rasmussen UF; Krustrup P; Bangsbo J; Rasmussen HN
    Pflugers Arch; 2001 Nov; 443(2):180-7. PubMed ID: 11713642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an external NADH oxidase in rat kidney cortex mitochondria.
    Linke B; Henke W; Gerber G
    Ren Physiol Biochem; 1993; 16(5):244-8. PubMed ID: 7694337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between succinate dehydrogenase and ubiquinone-binding protein from succinate-ubiquinone reductase.
    Yu L; Yu CA
    Biochim Biophys Acta; 1980 Nov; 593(1):24-38. PubMed ID: 7426645
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.