These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 6791219)

  • 21. Interactions of di-n-propylacetate, gabaculine, and aminooxyacetic acid: anticonvulsant activity and the gamma-aminobutyrate system.
    Wood JD; Kurylo E; Tsui SK
    J Neurochem; 1981 Dec; 37(6):1440-7. PubMed ID: 6801201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of retinal spike discharge by dipropylacetate (Depakene): a possible involvement of GABA.
    Hayashi T; Negishi K
    Brain Res; 1979 Oct; 175(2):271-8. PubMed ID: 226226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo.
    Iadarola MJ; Gale K
    Eur J Pharmacol; 1979 Oct; 59(1-2):125-9. PubMed ID: 389641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of recurrent withdrawal on spinal GABA release during chronic morphine infusion in the rat.
    Dunbar SA; Karamian I; Yeatman A; Zhang J
    Eur J Pharmacol; 2006 Mar; 535(1-3):152-6. PubMed ID: 16540107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. micro-Opioid receptor endocytosis prevents adaptations in ventral tegmental area GABA transmission induced during naloxone-precipitated morphine withdrawal.
    Madhavan A; He L; Stuber GD; Bonci A; Whistler JL
    J Neurosci; 2010 Mar; 30(9):3276-86. PubMed ID: 20203187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of GABA-ergic substances on the analgesic effect of morphine in rats].
    Ostrovskaia RU; Bulaev VM
    Biull Eksp Biol Med; 1979 Jul; 88(7):35-7. PubMed ID: 380685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pharmacological activation of gamma-aminobutyric acid-system blunts prolactin response to mechanical breast stimulation in puerperal women.
    Melis GB; Fruzzetti F; Paoletti AM; Mais V; Kemeny A; Strigini F; Boldrini A; Fioretti P
    J Clin Endocrinol Metab; 1984 Jan; 58(1):201-5. PubMed ID: 6417154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decline in the mean integrated electroencephalogram voltage during morphine abstinence in the rat.
    Khazan N; Colasanti B
    J Pharmacol Exp Ther; 1971 Jun; 177(3):491-9. PubMed ID: 4328019
    [No Abstract]   [Full Text] [Related]  

  • 29. An electromyographic method for the assessment of naloxone-induced abstinence in morphine-dependent rats.
    Menon MK; Tseng LF; Loh HH; Clark WG
    Naunyn Schmiedebergs Arch Pharmacol; 1980 May; 312(1):43-9. PubMed ID: 7190227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of GABA and excitatory amino acids in the development of the leptazol-induced epileptogenic EEG.
    Kent AP; Webster RA
    Neuropharmacology; 1986 Sep; 25(9):1023-30. PubMed ID: 2877416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GABA and opioid mechanisms of the central amygdala underlie the withdrawal-potentiated startle from acute morphine.
    Cabral A; Ruggiero RN; Nobre MJ; Brandão ML; Castilho VM
    Prog Neuropsychopharmacol Biol Psychiatry; 2009 Mar; 33(2):334-44. PubMed ID: 19150477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the role of serotonin in different regions of the rat central nervous system on pentylenetetrazol-induced seizures and the effect of di-n-propylacetate.
    Lazarova M; Bendotti C; Samanin R
    Naunyn Schmiedebergs Arch Pharmacol; 1983 Mar; 322(2):147-52. PubMed ID: 6408491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphine withdrawal modifies antinociceptive effects of acute morphine in rats.
    Dong Z; Mao R; Han H; Cao J; Xu L
    Biochem Biophys Res Commun; 2006 Jul; 346(2):578-82. PubMed ID: 16762316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of gamma-aminobutyric acid on painful sense in central nervous system of morphine-dependent rats.
    Xu Y; Xu MY; Li X
    Neurosci Bull; 2008 Oct; 24(5):278-82. PubMed ID: 18839020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GABAergic agents-induced antinociceptive effect in mice.
    Aley KO; Kulkarni SK
    Methods Find Exp Clin Pharmacol; 1989 Oct; 11(10):597-601. PubMed ID: 2511384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Periodic abstinence enhances nociception without significantly altering the antinociceptive efficacy of spinal morphine in the rat.
    Dunbar SA; Karamian IG
    Neurosci Lett; 2003 Jul; 344(3):145-8. PubMed ID: 12812826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of n-di-propylacetate on aggressive behavior and brain GABA level in isolated mice.
    Simler S; Puglisi-Allegra S; Mandel P
    Pharmacol Biochem Behav; 1983 May; 18(5):717-20. PubMed ID: 6407034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The effect of GABA-positive agents on the formation of morphine dependence and on the manifestations of a withdrawal syndrome].
    Belozertseva IV; Andreev BV
    Eksp Klin Farmakol; 2000; 63(1):19-23. PubMed ID: 10763104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gamma-aminobutyric acid (GABA) and sleep. The influence of di-n-propylacetic acid on sleep in man.
    Schneider E; Ziegler B; Maxion H
    Eur Neurol; 1977; 15(3):146-52. PubMed ID: 192556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The presynaptic effects of valproic acid in the isolated frog spinal cord.
    Hackman JC; Grayson V; Davidoff RA
    Brain Res; 1981 Sep; 220(2):269-85. PubMed ID: 6116514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.