These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6791641)

  • 1. Mechanism of uncoupling by uncouples of oxidative phosphorylation.
    Green DE; Vande Zande H
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1017-24. PubMed ID: 6791641
    [No Abstract]   [Full Text] [Related]  

  • 2. Respiratory control and ADP:O coupling ratios of isolated chick heart mitochondria.
    Toth PP; Sumerix KJ; Ferguson-Miller S; Suelter CH
    Arch Biochem Biophys; 1990 Jan; 276(1):199-211. PubMed ID: 2153362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling of oxidative phosphorylation.
    Hanstein WG
    Biochim Biophys Acta; 1976 Sep; 456(2):129-48. PubMed ID: 788793
    [No Abstract]   [Full Text] [Related]  

  • 4. In vitro effects of cyclosporine on function of rat kidney mitochondria.
    Strzelecki T; Khauli RB; Kumar S; Menon M
    Transplant Proc; 1987 Feb; 19(1 Pt 2):1393-4. PubMed ID: 3152630
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy-dependence exchange of K+ in heart mitochondria. K+ efflux.
    Chávez E; Jung DW; Brierley GP
    Arch Biochem Biophys; 1977 Oct; 183(2):460-70. PubMed ID: 21618
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of carbonyl cyanide m-chlorophenylhydrazone on oxidative phosphorylation in rat liver mitochondria: site-specificity of its action.
    Katyare SS
    Indian J Biochem Biophys; 1986 Apr; 23(2):70-5. PubMed ID: 3770793
    [No Abstract]   [Full Text] [Related]  

  • 7. Lipophilic thiourea and thiouracil as inhibitors of oxidative phosphorylation.
    Bäuerlein E; Keihl R
    FEBS Lett; 1976 Jan; 61(1):68-71. PubMed ID: 1245224
    [No Abstract]   [Full Text] [Related]  

  • 8. Modulation of the kinetics and the steady-state level of intermediates of mitochondrial coupled reactions by inhibitors and uncouplers.
    Yagi T; Matsuno-Yagi A; Vik SB; Hatefi Y
    Biochemistry; 1984 Feb; 23(5):1029-36. PubMed ID: 6712922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reserpine as an uncoupler of oxidative phosphorylation and the relevance to its psychoactive properties.
    Weinbach EC; Costa JL; Claggett CE; Fay DD; Hundal T
    Biochem Pharmacol; 1983 Apr; 32(8):1371-7. PubMed ID: 6222736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of Pi-ATP exchange in the oligomycin-sensitive ATPase: effect of a coupling factor.
    Joshi S; Shaikh F; Sanadi DR
    Biochem Biophys Res Commun; 1975 Aug; 65(4):1371-7. PubMed ID: 150273
    [No Abstract]   [Full Text] [Related]  

  • 11. Subcellular control of oxygen transport.
    Takahashi E; Doi K
    Adv Exp Med Biol; 1995; 393():357-61. PubMed ID: 8629514
    [No Abstract]   [Full Text] [Related]  

  • 12. Thiols in oxidative phosphorylation: inhibition and energy-potentiated uncoupling by monothiol and dithiol modifiers.
    Yagi T; Hatefi Y
    Biochemistry; 1984 May; 23(11):2449-55. PubMed ID: 6477876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncoupler-reversible inhibition of mitochondrial ATPase by metal chelates of bathophenanthroline. I. General features.
    Carlsson C; Ernster L
    Biochim Biophys Acta; 1981 Dec; 638(2):345-57. PubMed ID: 6459123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria.
    Cunarro J; Weiner MW
    Biochim Biophys Acta; 1975 May; 387(2):234-40. PubMed ID: 1125290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli mutants resistant to uncouplers of oxidative phosphorylation.
    Ito M; Ohnishi Y
    Microbiol Immunol; 1982; 26(11):1079-84. PubMed ID: 6762486
    [No Abstract]   [Full Text] [Related]  

  • 16. Uncoupling of oxidative phosphorylation does not induce thermotolerance in cultured Chinese hamster cells.
    Rastogi D; Nagle WA; Henle KJ; Moss AJ; Rastogi SP
    Int J Hyperthermia; 1988; 4(3):333-44. PubMed ID: 3385224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of oxidative phosphorylation by chemically modified coupling factor F1: differential inhibition of reactions catalyzed by F1 labeled with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole or 2,3-butanedione.
    Steinmeier RC; Wang JH
    Biochemistry; 1979 Jan; 18(1):11-8. PubMed ID: 154345
    [No Abstract]   [Full Text] [Related]  

  • 18. Acetylenedicarboxylic acid dimethylester (ADDM): A new inhibitor of oxidative phosphorylation in beef heart mitochondria.
    Bäuerlein E; Trasch H
    FEBS Lett; 1979 Dec; 108(1):171-5. PubMed ID: 520541
    [No Abstract]   [Full Text] [Related]  

  • 19. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells.
    Dibrov PA; Lazarova RL; Skulachev VP; Verkhovskaya ML
    Biochim Biophys Acta; 1986 Jul; 850(3):458-65. PubMed ID: 2942186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Generation of superoxide radicals by ischemic heart mitochondria].
    Ledenev AN; Ruuge EK
    Biull Eksp Biol Med; 1985 Sep; 100(9):303-5. PubMed ID: 2994776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.