These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6791691)

  • 1. Amino acid uptake by isolated renal brush border membrane vesicles in various buffers.
    Foreman JW; Wald H; Reynolds RA; Segal S
    Biochim Biophys Acta; 1981 Aug; 646(1):188-92. PubMed ID: 6791691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium gradient dependence of proline and glycine uptake in rat renal brush-border membrane vesicles.
    McNamara PD; Pepe LM; Segal S
    Biochim Biophys Acta; 1979 Sep; 556(1):151-60. PubMed ID: 476115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.
    Mircheff AK; Kippen I; Hirayama B; Wright EM
    J Membr Biol; 1982; 64(1-2):113-22. PubMed ID: 7057450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na+-independent L-arginine transport in rabbit renal brush border membrane vesicles.
    Hammerman MR
    Biochim Biophys Acta; 1982 Feb; 685(1):71-7. PubMed ID: 7059593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perturbation of renal amino acid transport by brush border membrane vesicles in the vitamin D-deficient rat.
    Dabbagh S; Gusowski N; Padilla M; Theissen M; Chesney RW
    Biochem Med Metab Biol; 1990 Aug; 44(1):64-76. PubMed ID: 2390291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate uptake by renal membrane vesicles of rabbits adapted to high and low phosphorus diets.
    Cheng L; Liang CT; Sacktor B
    Am J Physiol; 1983 Aug; 245(2):F175-80. PubMed ID: 6881335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system.
    Hammerman MR; Sacktor B
    Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acidosis on glutamine transport by isolated rat renal brush-border and basolateral-membrane vesicles.
    Foreman JW; Reynolds RA; Ginkinger K; Segal S
    Biochem J; 1983 Jun; 212(3):713-20. PubMed ID: 6882392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and function of the amino acid transporter PAT1 (slc36a1) from rabbit and discrimination between transport via PAT1 and system IMINO in renal brush-border membrane vesicles.
    Miyauchi S; Abbot EL; Zhuang L; Subramanian R; Ganapathy V; Thwaites DT
    Mol Membr Biol; 2005; 22(6):549-59. PubMed ID: 16373326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental aspects of proline transport in rat renal brush border membranes.
    Medow MS; Roth KS; Goldmann DR; Ginkinger K; Hsu BY; Segal S
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7561-4. PubMed ID: 3463985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+-gradient-dependent transport of L-proline and analysis of its carrier system in brush-border membrane vesicles of the guinea-pig ileum.
    Hayashi K; Yamamoto SI; Ohe K; Miyoshi A; Kawasaki T
    Biochim Biophys Acta; 1980 Oct; 601(3):654-63. PubMed ID: 7417443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of papain upon proline and sodium transport of rat renal brush-border membrane vesicles.
    Hsu BY; Corcoran SM; Marshall CM; Segal S
    Biochim Biophys Acta; 1983 Oct; 735(1):40-52. PubMed ID: 6138097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles.
    Stoll R; Kinne R; Murer H
    Biochem J; 1979 Jun; 180(3):465-70. PubMed ID: 486124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of L-proline and sodium transport in renal brush border membranes isolated from 7-day-old and adult rats.
    Hsu BY; McNamara PD; Cariola CM; Fenstermacher EA; Rea CT; Reynolds RA; Segal S
    Biosci Rep; 1989 Dec; 9(6):709-19. PubMed ID: 2611362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal palmitate transport: possible sites for interaction with a plasma membrane fatty acid-binding protein.
    Trimble ME
    Mol Cell Biochem; 1990 Oct 15-Nov 8; 98(1-2):201-7. PubMed ID: 2125115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of parathyroid hormone (PTH) and dietary phosphate on the sodium-dependent phosphate transport system located in the rat renal brush border membrane.
    Murer H; Evers C; Stoll R; Kinne R
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():455-62. PubMed ID: 211000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine uptake by rat renal brush-border membrane vesicles.
    McNamara PD; Rea CT; Segal S
    Am J Physiol; 1986 Oct; 251(4 Pt 2):F734-42. PubMed ID: 3094385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of azaserine upon the proline and methyl alpha-D-glucoside transport systems of rat renal brush-border membranes.
    Hsu BY; Marshall CM; Corcoran SM; Segal S
    Biochim Biophys Acta; 1982 Oct; 692(1):41-51. PubMed ID: 7171588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane.
    Zelikovic I; Budreau-Patters A
    Mol Genet Metab; 1999 Jul; 67(3):236-47. PubMed ID: 10381331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-proline transport by newborn rat kidney brush-border membrane vesicles.
    Goldmann DR; Roth KS; Langfitt TW; Segal S
    Biochem J; 1979 Jan; 178(1):253-6. PubMed ID: 435284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.