These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 6792166)

  • 1. 5beta-cholestane-3alpha, 27-diol: NAD+ oxidoreductase and 3alpha-hydroxy-5beta-cholestan-27-al; NAD+ oxidoreductase in rat liver extract.
    Tsukiai S
    Hiroshima J Med Sci; 1981 Mar; 30(1):1-7. PubMed ID: 6792166
    [No Abstract]   [Full Text] [Related]  

  • 2. Partial synthesis of hypothetical intermediates in biosynthesis of lithocholic acid from cholesterol, 3 alpha-hydroxy-5 beta-cholestan-27-al and 5 beta-cholestane-3 alpha, 27-diol.
    Tsukiai S
    Hiroshima J Med Sci; 1980 Dec; 29(4):163-7. PubMed ID: 6782045
    [No Abstract]   [Full Text] [Related]  

  • 3. Biosynthesis of cholestanol: 5-alpha-cholestan-3-one reductase of rat liver.
    Shefer S; Hauser S; Mosbach EH
    J Lipid Res; 1966 Nov; 7(6):763-71. PubMed ID: 4381999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of 7alpha-hydroxycholesterol and 7alpha-hydroxy-beta-sitosterol to 3alpha, 7alpha-dihydroxy- and 3alpha, 7alpha, 12alpha-trihydroxy-5beta-steroids in vitro.
    Aringer L
    J Lipid Res; 1975 Nov; 16(6):426-33. PubMed ID: 1194785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5 Beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol:NAD+ oxidoreductase and 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol-26-al:NAD+ oxidoreductase in rat liver.
    Okuda K; Takigawa N; Fukuba R; Kuwaki T
    Biochim Biophys Acta; 1969 Jul; 185(1):1-8. PubMed ID: 4307681
    [No Abstract]   [Full Text] [Related]  

  • 6. Synthesis and metabolism of 5beta-[11,12-3H]cholestane-3alpha, 7alpha-diol.
    Okuda K; Atsuta Y
    J Biochem; 1978 Feb; 83(2):379-83. PubMed ID: 632228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes.
    Cui K; Ma Q; Lu AY; Yang CS
    Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis.
    Heredia VV; Penning TM
    Biochemistry; 2004 Sep; 43(38):12028-37. PubMed ID: 15379543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroid oxidoreductase activity of alcohol dehydrogenases from horse, rat, and human liver.
    Cronholm T; Larsén C; Jvövall J; Theorell H; Akeson A
    Acta Chem Scand B; 1975; 29(5):571-6. PubMed ID: 170765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the biosynthesis of cholestanol in cultured cells.
    Serizawa S; Otsuka H; Seyama Y; Yamakawa T
    J Biochem; 1982 Nov; 92(5):1547-57. PubMed ID: 6818224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD(P)H:ferric iron reductase in endosomal membranes from rat liver.
    Scheiber B; Goldenberg H
    Arch Biochem Biophys; 1993 Sep; 305(2):225-30. PubMed ID: 8396885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus.
    Ferderbar S; Pereira EC; Apolinário E; Bertolami MC; Faludi A; Monte O; Calliari LE; Sales JE; Gagliardi AR; Xavier HT; Abdalla DS
    Diabetes Metab Res Rev; 2007 Jan; 23(1):35-42. PubMed ID: 16634125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p-nitrosophenol reduction by liver cytosol from ADH-positive and -negative deermice (Peromyscus maniculatus).
    Dudley BF; Winston GW
    Arch Biochem Biophys; 1995 Feb; 316(2):879-85. PubMed ID: 7532387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of human hepatic cytochrome p450 enzymes involved in the biotransformation of cholic and chenodeoxycholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2008 Oct; 36(10):1983-91. PubMed ID: 18583509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new unified theory: C-C-2W is the chemical cause of all so-called cholesterol and cholestanol lipidoses.
    Boldrini P
    Physiol Chem Phys; 1980; 12(2):153-65. PubMed ID: 6776547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of ester-linked lithocholic acid dimers.
    Nahar L; Turner AB
    Steroids; 2003 Dec; 68(14):1157-61. PubMed ID: 14643877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of (24R and 24S)-5beta-cholestane-3alpha,7alpha,24,25-tetrols and (24R and 24S)-5beta-cholestane-3alpha,24,25-triols.
    Batta AK; Dayal B; Tint GS; Shefer S; Toome V; Salen G; Mosbach EH
    Steroids; 1978 Jan; 31(1):99-111. PubMed ID: 663960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereospecificity of hydride transfer and substrate specificity for FMN-containing NAD(P)H-flavin oxidoreductase from the luminescent bacterium, Vibrio fischeri ATCC 7744.
    Inouye S; Nakamura H
    Biochem Biophys Res Commun; 1994 Nov; 205(1):275-81. PubMed ID: 7999036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ozone exposure in vivo and formation of biologically active oxysterols in the lung.
    Pulfer MK; Taube C; Gelfand E; Murphy RC
    J Pharmacol Exp Ther; 2005 Jan; 312(1):256-64. PubMed ID: 15316091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.