These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 6793592)
41. Enhancement through mutagenesis of the binding of the isolated kringle 2 domain of human plasminogen to omega-amino acid ligands and to an internal sequence of a Streptococcal surface protein. Nilsen SL; Prorok M; Castellino FJ J Biol Chem; 1999 Aug; 274(32):22380-6. PubMed ID: 10428809 [TBL] [Abstract][Full Text] [Related]
42. Influence of tryptophan modification upon digestion of antithrombin III by elastase. Scully MF; Shah N; Ellis V; Kakkar VV Thromb Haemost; 1991 Apr; 65(4):351-4. PubMed ID: 2057915 [TBL] [Abstract][Full Text] [Related]
43. Rhesus monkey lipoprotein(a) binds to lysine Sepharose and U937 monocytoid cells less efficiently than human lipoprotein(a). Evidence for the dominant role of kringle 4(37). Scanu AM; Miles LA; Fless GM; Pfaffinger D; Eisenbart J; Jackson E; Hoover-Plow JL; Brunck T; Plow EF J Clin Invest; 1993 Jan; 91(1):283-91. PubMed ID: 8423225 [TBL] [Abstract][Full Text] [Related]
44. Expression, purification and characterization of the recombinant kringle 2 and kringle 3 domains of human plasminogen and analysis of their binding affinity for omega-aminocarboxylic acids. Marti D; Schaller J; Ochensberger B; Rickli EE Eur J Biochem; 1994 Jan; 219(1-2):455-62. PubMed ID: 8307012 [TBL] [Abstract][Full Text] [Related]
45. The aromatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine and bovine homologs. Ramesh V; Gyenes M; Patthy L; Llinás M Eur J Biochem; 1986 Sep; 159(3):581-95. PubMed ID: 3019697 [TBL] [Abstract][Full Text] [Related]
46. Ligand binding to the tissue-type plasminogen activator kringle 2 domain: structural characterization by 1H-NMR. Byeon IJ; Kelley RF; Mulkerrin MG; An SS; Llinás M Biochemistry; 1995 Mar; 34(9):2739-50. PubMed ID: 7893685 [TBL] [Abstract][Full Text] [Related]
47. Interactions of a fluorescently labeled peptide with kringle domains in proteins. Balciunas A; Fless GM; Scanu AM; Copeland RA J Protein Chem; 1993 Feb; 12(1):39-43. PubMed ID: 8381284 [TBL] [Abstract][Full Text] [Related]
48. Kringle-kringle interactions in multimer kringle structures. Padmanabhan K; Wu TP; Ravichandran KG; Tulinsky A Protein Sci; 1994 Jun; 3(6):898-910. PubMed ID: 8069221 [TBL] [Abstract][Full Text] [Related]
49. Kringle 2 mediates high affinity binding of plasminogen to an internal sequence in streptococcal surface protein PAM. Wistedt AC; Kotarsky H; Marti D; Ringdahl U; Castellino FJ; Schaller J; Sjöbring U J Biol Chem; 1998 Sep; 273(38):24420-4. PubMed ID: 9733732 [TBL] [Abstract][Full Text] [Related]
50. Solution structure and functional characterization of human plasminogen kringle 5. Battistel MD; Grishaev A; An SS; Castellino FJ; Llinás M Biochemistry; 2009 Nov; 48(43):10208-19. PubMed ID: 19821587 [TBL] [Abstract][Full Text] [Related]
51. Occurrence of tryptophan in the enzymically active site of diphtheria toxin fragment A. Michel A; Dirkx J Biochim Biophys Acta; 1977 Mar; 491(1):286-95. PubMed ID: 849463 [TBL] [Abstract][Full Text] [Related]
52. Lysine/fibrin binding sites of kringles modeled after the structure of kringle 1 of prothrombin. Tulinsky A; Park CH; Mao B; Llinás M Proteins; 1988; 3(2):85-96. PubMed ID: 3135547 [TBL] [Abstract][Full Text] [Related]
53. Apolipoprotein(a): structure-function relationship at the lysine-binding site and plasminogen activator cleavage site. Anglés-Cano E; Rojas G Biol Chem; 2002 Jan; 383(1):93-9. PubMed ID: 11928826 [TBL] [Abstract][Full Text] [Related]
54. Differential binding of plasminogen, plasmin, and angiostatin4.5 to cell surface beta-actin: implications for cancer-mediated angiogenesis. Wang H; Doll JA; Jiang K; Cundiff DL; Czarnecki JS; Wilson M; Ridge KM; Soff GA Cancer Res; 2006 Jul; 66(14):7211-5. PubMed ID: 16849568 [TBL] [Abstract][Full Text] [Related]
55. Investigation of binding mechanism for human plasminogen Kringle 5 with its potential receptor vWA1 domain in Cochlin by bio-specific technologies and molecular dynamic simulation. Zhang J; Wang Z; Wang J; Zhang R; Dong X; Bian L Bioorg Chem; 2022 Oct; 127():105989. PubMed ID: 35777236 [TBL] [Abstract][Full Text] [Related]
56. Direct identification of lysine-33 as the principal cationic center of the omega-amino acid binding site of the recombinant kringle 2 domain of tissue-type plasminogen activator. De Serrano VS; Sehl LC; Castellino FJ Arch Biochem Biophys; 1992 Jan; 292(1):206-12. PubMed ID: 1309292 [TBL] [Abstract][Full Text] [Related]
57. Binding site of alpha 2-plasmin inhibitor to plasminogen. Sugiyama N; Sasaki T; Iwamoto M; Abiko Y Biochim Biophys Acta; 1988 Jan; 952(1):1-7. PubMed ID: 3334852 [TBL] [Abstract][Full Text] [Related]
58. Proposed mechanisms for binding of apo[a] kringle type 9 to apo B-100 in human lipoprotein[a]. Guevara J; Spurlino J; Jan AY; Yang CY; Tulinsky A; Prasad BV; Gaubatz JW; Morrisett JD Biophys J; 1993 Mar; 64(3):686-700. PubMed ID: 8386013 [TBL] [Abstract][Full Text] [Related]
59. Residues Cys-1 and Cys-79 are not essential for refolding of reduced-denatured kringle 4 fragment of human plasminogen. Trexler M; Patthy L Biochim Biophys Acta; 1984 Jun; 787(3):275-80. PubMed ID: 6329306 [TBL] [Abstract][Full Text] [Related]
60. Further characterization of the binding of plasminogen to heparin: evidence for the involvement of lysine residues. Soeda S; Ohki H; Shimeno H; Nagamatsu A Biochim Biophys Acta; 1989 Nov; 999(1):29-35. PubMed ID: 2572276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]