These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 6794602)
1. On the function of N-[(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl]threonine in transfer ribonucleic acid. Metal ion binding studies. Reddy PR; Hamill WD; Chheda GB; Schweizer MP Biochemistry; 1981 Aug; 20(17):4979-86. PubMed ID: 6794602 [TBL] [Abstract][Full Text] [Related]
2. Quantitative aspects of metal ion binding to certain transfer RNA anticodon loop modified nucleosides. Schweizer MP; De N; Pulsipher M; Brown M; Reddy PR; Petrie CR; Chheda GB Biochim Biophys Acta; 1984 Nov; 802(2):352-61. PubMed ID: 6093890 [TBL] [Abstract][Full Text] [Related]
3. Metal binding ability of hypermodified nucleosides of t-RNA. Potentiometric and spectroscopic studies on the metal complexes of N-[(9-beta-D-ribofuranosylpurin-6-yl)-carbamoyl] threonine. Várnagy K; Jezowska-Bojczuk M; Swiatek J; Kozlowski H; Sóvágó I; Adamiak RW J Inorg Biochem; 1990 Dec; 40(4):357-63. PubMed ID: 2128318 [TBL] [Abstract][Full Text] [Related]
4. Synthesis properties of the naturally occurring N-[(9-beta-D-ribofuranosylpurin-6-yl)-N-methylcarbamoyl]-L-threonine (mt-6A) and other related synthetic analogs. Dutta SP; Hong CI; Murphy GP; Mittelman A; Chheda GB Biochemistry; 1975 Jul; 14(14):3144-51. PubMed ID: 1148194 [TBL] [Abstract][Full Text] [Related]
5. Interaction of the tRNA-derived unusual nucleoside, t6A, with Mn(II) and Mg(II). Reddy RP; Schweizer MP; Chheda GB FEBS Lett; 1979 Oct; 106(1):63-6. PubMed ID: 499504 [No Abstract] [Full Text] [Related]
6. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II). Buy C; Girault G; Zimmermann JL Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962 [TBL] [Abstract][Full Text] [Related]
7. Carbon-13 NMR studies on the interaction of manganese ion with the tRNA derived modified nucleoside, t6Aa. Schweizer MP; Hamill WD Biochem Biophys Res Commun; 1978 Dec; 85(4):1367-72. PubMed ID: 743304 [No Abstract] [Full Text] [Related]
8. On the metal-ion coordinating properties of the 5'-monophosphates of 1, N6-ethenoadenosine (epsilon-AMP), adenosine and uridine. Comparison of the macrochelate formation in the complexes of epsilon-AMP, AMP, ADP and ATP. Sigel H; Scheller KH Eur J Biochem; 1984 Jan; 138(2):291-9. PubMed ID: 6321171 [TBL] [Abstract][Full Text] [Related]
9. Metal-ion-governed molecular recognition: extent of intramolecular stack formation in mixed-ligand--copper(II) complexes containing a heteroaromatic N base and an adenosine monophosphate (2'AMP, 3'AMP, or 5'AMP). A structuring effect of the metal-ion bridge. Massoud SS; Tribolet R; Sigel H Eur J Biochem; 1990 Jan; 187(2):387-93. PubMed ID: 2298216 [TBL] [Abstract][Full Text] [Related]
10. Derivatives of N-(N-(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl)threonine in phosphodiesterase hydrolysates of wheat embryo transfer ribonucleic acid. Cunningham RS; Gray MW Biochemistry; 1974 Jan; 13(3):543-53. PubMed ID: 4358950 [No Abstract] [Full Text] [Related]
11. Stabilities and isomeric equilibria in aqueous solution of monomeric metal ion complexes of adenosine 5'-diphosphate (ADP3-) in comparison with those of adenosine 5'-monophosphate (AMP2-). Bianchi EM; Sajadi SA; Song B; Sigel H Chemistry; 2003 Feb; 9(4):881-92. PubMed ID: 12584703 [TBL] [Abstract][Full Text] [Related]
12. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes. Summers JS; Hoogstraten CG; Britt RD; Base K; Shaw BR; Ribeiro AA; Crumbliss AL Inorg Chem; 2001 Dec; 40(26):6547-54. PubMed ID: 11735462 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification of N6-(N-threonylcarbonyl) adenosine. Part II. Condensation of the carboxyl group with amines. Krzyzosiak WJ; Biernat J; Ciesiołka J; Górnicki P; Wiewiórowski M Nucleic Acids Res; 1979 Nov; 7(6):1663-74. PubMed ID: 503865 [TBL] [Abstract][Full Text] [Related]
14. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Villafranca JJ; Ash DE; Wedler FC Biochemistry; 1976 Feb; 15(3):536-43. PubMed ID: 766828 [TBL] [Abstract][Full Text] [Related]
15. Effect of threonylcarbamoyl modification (t6A) in yeast tRNA Arg III on codon-anticodon and anticodon-anticodon interactions. A thermodynamic and kinetic evaluation. Weissenbach J; Grosjean H Eur J Biochem; 1981 May; 116(1):207-13. PubMed ID: 6788546 [TBL] [Abstract][Full Text] [Related]
16. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
17. Mapping of glucose and glucose-6-phosphate binding sites on bovine brain hexokinase. A 1H- and 31P-NMR investigation. Jarori GK; Iyer SB; Kasturi SR; Kenkare UW Eur J Biochem; 1990 Feb; 188(1):9-14. PubMed ID: 2318206 [TBL] [Abstract][Full Text] [Related]
18. Metal ion stabilization of the U-turn of the A37 N6-dimethylallyl-modified anticodon stem-loop of Escherichia coli tRNAPhe. Cabello-Villegas J; Tworowska I; Nikonowicz EP Biochemistry; 2004 Jan; 43(1):55-66. PubMed ID: 14705931 [TBL] [Abstract][Full Text] [Related]
19. Coordinative binding of divalent cations with ligands related to bacterial spores. Equilibrium studies. Chung L; Rajan KS; Merdinger E; Grecz N Biophys J; 1971 Jun; 11(6):469-82. PubMed ID: 5569493 [TBL] [Abstract][Full Text] [Related]
20. Thiolation and 2-methylthio- modification of Bacillus subtilis transfer ribonucleic acids. Vold BS; Longmire ME; Keith DE J Bacteriol; 1981 Dec; 148(3):869-76. PubMed ID: 6171558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]