BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6794605)

  • 1. Reductive metabolism and alkylating activity of mitomycin C induced by rat liver microsomes.
    Tomasz M; Lipman R
    Biochemistry; 1981 Aug; 20(17):5056-61. PubMed ID: 6794605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP
    Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Pan SS; Andrews PA; Glover CJ; Bachur NR
    J Biol Chem; 1984 Jan; 259(2):959-66. PubMed ID: 6319393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic activation of mitomycin C by liver microsomes and nuclei.
    Kennedy KA; Sligar SG; Polomski L; Sartorelli AC
    Biochem Pharmacol; 1982 Jun; 31(11):2011-6. PubMed ID: 6810899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MITOMYCIN C: CHEMICAL AND BIOLOGICAL STUDIES ON ALKYLATION.
    SCHWARTZ HS; SODERGREN JE; PHILIPS FS
    Science; 1963 Nov; 142(3596):1181-3. PubMed ID: 14069241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitomycin C-DNA adducts generated by DT-diaphorase. Revised mechanism of the enzymatic reductive activation of mitomycin C.
    Suresh Kumar G; Lipman R; Cummings J; Tomasz M
    Biochemistry; 1997 Nov; 36(46):14128-36. PubMed ID: 9369485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioreductive activation of mitomycin C by DT-diaphorase.
    Siegel D; Beall H; Senekowitsch C; Kasai M; Arai H; Gibson NW; Ross D
    Biochemistry; 1992 Sep; 31(34):7879-85. PubMed ID: 1510975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of photoemissive species by mitomycin C redox cycling in rat liver microsomes.
    Napetschnig S; Sies H
    Biochem Pharmacol; 1987 May; 36(10):1617-21. PubMed ID: 3109425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkylation of DNA by C-10 of 2,7-diaminomitosene.
    Iyengar BS; Dorr RT; Shipp NG; Remers WA
    J Med Chem; 1990 Jan; 33(1):253-7. PubMed ID: 2296022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypoxia and phenobarbital treatment on the metabolism of mitomycin C in experimental animals.
    Nomura F; Ohnishi K; Koen H; Iida S; Tanabe Y; Hatano H; Okuda K
    Hepatology; 1985; 5(6):1190-3. PubMed ID: 3934061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of reductively activated mitomycin C with aqueous bicarbonate: Isolation and characterization of an oxazolidinone derivative of cis-1-hydroxy-2,7-diaminomitosene.
    Paz MM
    Bioorg Med Chem Lett; 2010 Jan; 20(1):31-4. PubMed ID: 19954979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive activation of mitomycin C.
    Hoey BM; Butler J; Swallow AJ
    Biochemistry; 1988 Apr; 27(7):2608-14. PubMed ID: 3132971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive alkylation of DNA by mitomycin A, a mitomycin with high redox potential.
    McGuinness BF; Lipman R; Goldstein J; Nakanishi K; Tomasz M
    Biochemistry; 1991 Jul; 30(26):6444-53. PubMed ID: 1905153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugation of glutathione and other thiols with bioreductively activated mitomycin C. Effect of thiols on the reductive activation rate.
    Sharma M; Tomasz M
    Chem Res Toxicol; 1994; 7(3):390-400. PubMed ID: 8075371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells.
    Kennedy KA; Rockwell S; Sartorelli AC
    Cancer Res; 1980 Jul; 40(7):2356-60. PubMed ID: 7388797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autocatalytic quinone methide formation from mitomycin c.
    Peterson DM; Fisher J
    Biochemistry; 1986 Jul; 25(14):4077-84. PubMed ID: 3091069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of influence of the carbamoyl group on the stereochemistry of the acid-catalyzed opening of the aziridine ring of the mitomycins and of congeners.
    Hornemann U; Keller PJ; Takeda K
    J Med Chem; 1985 Jan; 28(1):31-6. PubMed ID: 3965712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of microsomal NADPH oxidation by quinone group-containing anticancer chemicals.
    Handa K; Sato S
    Gan; 1976 Aug; 67(4):523-8. PubMed ID: 15920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA alkylation by enzyme-activated mitomycin C.
    Pan SS; Iracki T; Bachur NR
    Mol Pharmacol; 1986 Jun; 29(6):622-8. PubMed ID: 3086708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide derivatives of 2,7-diaminomitosene.
    Iyengar BS; Dorr RT; Remers WA; Kowal CD
    J Med Chem; 1988 Aug; 31(8):1579-85. PubMed ID: 3397995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.