These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6794605)

  • 1. Reductive metabolism and alkylating activity of mitomycin C induced by rat liver microsomes.
    Tomasz M; Lipman R
    Biochemistry; 1981 Aug; 20(17):5056-61. PubMed ID: 6794605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase.
    Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP
    Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive activation of mitomycin C and mitomycin C metabolites catalyzed by NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Pan SS; Andrews PA; Glover CJ; Bachur NR
    J Biol Chem; 1984 Jan; 259(2):959-66. PubMed ID: 6319393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic activation of mitomycin C by liver microsomes and nuclei.
    Kennedy KA; Sligar SG; Polomski L; Sartorelli AC
    Biochem Pharmacol; 1982 Jun; 31(11):2011-6. PubMed ID: 6810899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MITOMYCIN C: CHEMICAL AND BIOLOGICAL STUDIES ON ALKYLATION.
    SCHWARTZ HS; SODERGREN JE; PHILIPS FS
    Science; 1963 Nov; 142(3596):1181-3. PubMed ID: 14069241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitomycin C-DNA adducts generated by DT-diaphorase. Revised mechanism of the enzymatic reductive activation of mitomycin C.
    Suresh Kumar G; Lipman R; Cummings J; Tomasz M
    Biochemistry; 1997 Nov; 36(46):14128-36. PubMed ID: 9369485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioreductive activation of mitomycin C by DT-diaphorase.
    Siegel D; Beall H; Senekowitsch C; Kasai M; Arai H; Gibson NW; Ross D
    Biochemistry; 1992 Sep; 31(34):7879-85. PubMed ID: 1510975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of photoemissive species by mitomycin C redox cycling in rat liver microsomes.
    Napetschnig S; Sies H
    Biochem Pharmacol; 1987 May; 36(10):1617-21. PubMed ID: 3109425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkylation of DNA by C-10 of 2,7-diaminomitosene.
    Iyengar BS; Dorr RT; Shipp NG; Remers WA
    J Med Chem; 1990 Jan; 33(1):253-7. PubMed ID: 2296022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypoxia and phenobarbital treatment on the metabolism of mitomycin C in experimental animals.
    Nomura F; Ohnishi K; Koen H; Iida S; Tanabe Y; Hatano H; Okuda K
    Hepatology; 1985; 5(6):1190-3. PubMed ID: 3934061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of reductively activated mitomycin C with aqueous bicarbonate: Isolation and characterization of an oxazolidinone derivative of cis-1-hydroxy-2,7-diaminomitosene.
    Paz MM
    Bioorg Med Chem Lett; 2010 Jan; 20(1):31-4. PubMed ID: 19954979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive activation of mitomycin C.
    Hoey BM; Butler J; Swallow AJ
    Biochemistry; 1988 Apr; 27(7):2608-14. PubMed ID: 3132971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive alkylation of DNA by mitomycin A, a mitomycin with high redox potential.
    McGuinness BF; Lipman R; Goldstein J; Nakanishi K; Tomasz M
    Biochemistry; 1991 Jul; 30(26):6444-53. PubMed ID: 1905153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conjugation of glutathione and other thiols with bioreductively activated mitomycin C. Effect of thiols on the reductive activation rate.
    Sharma M; Tomasz M
    Chem Res Toxicol; 1994; 7(3):390-400. PubMed ID: 8075371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells.
    Kennedy KA; Rockwell S; Sartorelli AC
    Cancer Res; 1980 Jul; 40(7):2356-60. PubMed ID: 7388797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autocatalytic quinone methide formation from mitomycin c.
    Peterson DM; Fisher J
    Biochemistry; 1986 Jul; 25(14):4077-84. PubMed ID: 3091069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of influence of the carbamoyl group on the stereochemistry of the acid-catalyzed opening of the aziridine ring of the mitomycins and of congeners.
    Hornemann U; Keller PJ; Takeda K
    J Med Chem; 1985 Jan; 28(1):31-6. PubMed ID: 3965712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of microsomal NADPH oxidation by quinone group-containing anticancer chemicals.
    Handa K; Sato S
    Gan; 1976 Aug; 67(4):523-8. PubMed ID: 15920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA alkylation by enzyme-activated mitomycin C.
    Pan SS; Iracki T; Bachur NR
    Mol Pharmacol; 1986 Jun; 29(6):622-8. PubMed ID: 3086708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotide derivatives of 2,7-diaminomitosene.
    Iyengar BS; Dorr RT; Remers WA; Kowal CD
    J Med Chem; 1988 Aug; 31(8):1579-85. PubMed ID: 3397995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.