These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6795335)

  • 1. Further studies of sulfoxide-reducing enzyme system.
    Kitamura S; Tatsumi K; Hirata Y; Yoshimura H
    J Pharmacobiodyn; 1981 Jul; 4(7):528-33. PubMed ID: 6795335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfoxide reduction catalyzed by guinea pig liver aldehyde oxidase in combination with one-electron reducing flavoenzymes.
    Yoshihara S; Tatsumi K
    J Pharmacobiodyn; 1985 Dec; 8(12):996-1005. PubMed ID: 3834063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism in vitro of sulindac. Sulfoxide-reducing enzyme systems in guinea pig liver.
    Kitamura S; Tatsumi K; Yoshimura H
    J Pharmacobiodyn; 1980 Jun; 3(6):290-8. PubMed ID: 6775073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sulfoxide-reducing enzyme system consisting of aldehyde oxidase and xanthine oxidase--a new electron transfer system.
    Kitamura S; Tatsumi K
    Chem Pharm Bull (Tokyo); 1983 Feb; 31(2):760-3. PubMed ID: 6688381
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulative mechanisms in NADH- and NADPH-supported N-oxidation of 4-chloroaniline catalyzed by cytochrome b5-enriched rabbit liver microsomal fractions.
    Golly I; Hlavica P
    Biochim Biophys Acta; 1987 Jun; 913(2):219-27. PubMed ID: 3109485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective induction of cytochrome b5 and NADH cytochrome b5 reductase by propylthiouracil.
    Kariya K; Lee E; Yamaoka M; Ishikawa H
    Life Sci; 1984 Dec; 35(23):2327-34. PubMed ID: 6438427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfoxide reductase activity of liver aldehyde oxidase.
    Tatsumi K; Kitamura S; Yamada H
    Biochim Biophys Acta; 1983 Sep; 747(1-2):86-92. PubMed ID: 6688361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiversity of the P450 catalytic cycle: yeast cytochrome b5/NADH cytochrome b5 reductase complex efficiently drives the entire sterol 14-demethylation (CYP51) reaction.
    Lamb DC; Kelly DE; Manning NJ; Kaderbhai MA; Kelly SL
    FEBS Lett; 1999 Dec; 462(3):283-8. PubMed ID: 10622712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-transport cytochrome P-450 system is involved in the microsomal metabolism of the carcinogen chromate.
    Garcia JD; Jennette KW
    J Inorg Biochem; 1981 Jul; 14(4):281-95. PubMed ID: 6792322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a predominantly NADH-dependent O-dealkylating system in rat hepatic microsomes.
    Kuwahara S; Mannering GJ
    Biochem Pharmacol; 1985 Dec; 34(24):4215-28. PubMed ID: 3935115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidase of neutrophils forms superoxide anion but does not reduce cytochrome c and dichlorophenolindophenol.
    Bellavite P; della Bianca V; Serra MC; Papini E; Rossi F
    FEBS Lett; 1984 May; 170(1):157-61. PubMed ID: 6327373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase.
    Marohnic CC; Bewley MC; Barber MJ
    Biochemistry; 2003 Sep; 42(38):11170-82. PubMed ID: 14503867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effect of ethanol consumption on hamster liver microsomal electron transport systems.
    McCoy GD; Lobel P; DeMarco GJ
    Alcohol Clin Exp Res; 1985; 9(2):131-2. PubMed ID: 2860817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Reconstitution of the monooxygenase system in a solution and in an immobilized phospholipid layer].
    Budennaia TIu; Dobrynina OV; Korneva EN; Lazarevich VG; Kuznetsova GP
    Biokhimiia; 1983 Dec; 48(12):2002-8. PubMed ID: 6423000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the biosynthesis of microsomal membrane proteins. Site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase and epoxide hydrolase.
    Okada Y; Frey AB; Guenthner TM; Oesch F; Sabatini DD; Kreibich G
    Eur J Biochem; 1982 Feb; 122(2):393-402. PubMed ID: 6800789
    [No Abstract]   [Full Text] [Related]  

  • 17. Ontogenesis of hepatocyte respiration processes in relation to rat liver cytochrome P450-dependent monooxygenase system.
    Plewka A; KamiƄski M; Plewka D
    Mech Ageing Dev; 1998 Nov; 105(3):197-207. PubMed ID: 9862230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new electron transfer system functioned as drug reducing enzyme system].
    Kitamura S
    Yakugaku Zasshi; 1988 Apr; 108(4):296-309. PubMed ID: 3145973
    [No Abstract]   [Full Text] [Related]  

  • 19. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner.
    Nishida H; Miki K
    Proteins; 1996 Sep; 26(1):32-41. PubMed ID: 8880927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propylthiouracil, a selective inhibitor of NADH-cytochrome b5 reductase.
    Lee E; Kariya K
    FEBS Lett; 1986 Dec; 209(1):49-51. PubMed ID: 3803575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.