These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate. Lewis JC Anal Biochem; 1967 May; 19(2):327-37. PubMed ID: 4963388 [No Abstract] [Full Text] [Related]
4. Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles. Kozuka S; Yasuda Y; Tochikubo K J Bacteriol; 1985 Jun; 162(3):1250-4. PubMed ID: 3922946 [TBL] [Abstract][Full Text] [Related]
5. Rapid determination of dipicolinic acid in the spores of Clostridium species by gas-liquid chromatography. Tabor MW; MacGee J; Holland JW Appl Environ Microbiol; 1976 Jan; 31(1):25-8. PubMed ID: 942206 [TBL] [Abstract][Full Text] [Related]
6. Muramic and dipicolinic acids in atmospheric particulate matter as biomarkers of bacteria and bacterial spores. Di Filippo P; Pomata D; Riccardi C; Buiarelli F; Uccelletti D; Zanni E Anal Bioanal Chem; 2017 Feb; 409(6):1657-1666. PubMed ID: 27928607 [TBL] [Abstract][Full Text] [Related]
7. A highly sensitive HPLC method for determination of nanomolar concentrations of dipicolinic acid, a characteristic constituent of bacterial endospores. Fichtel J; Köster J; Scholz-Böttcher B; Sass H; Rullkötter J J Microbiol Methods; 2007 Aug; 70(2):319-27. PubMed ID: 17573136 [TBL] [Abstract][Full Text] [Related]
9. Fourier transform infrared reflectance microspectroscopy study of Bacillus subtilis engineered without dipicolinic acid: the contribution of calcium dipicolinate to the mid-infrared absorbance of Bacillus subtilis endospores. Perkins DL; Lovell CR; Bronk BV; Setlow B; Setlow P; Myrick ML Appl Spectrosc; 2005 Jul; 59(7):893-6. PubMed ID: 16053560 [TBL] [Abstract][Full Text] [Related]
10. The analysis of the betaine homarine by high pressure liquid chromatography. Howard AG; Nickless G Anal Biochem; 1976 Nov; 76(l):377-9. PubMed ID: 998976 [No Abstract] [Full Text] [Related]
11. Evidence that dipicolinic acid is covalently bound to specific macromolecules in spores of Bacillus subtilis. Matano Y; Yasuda Y; Tochikubo K FEMS Microbiol Lett; 1993 May; 109(2-3):189-94. PubMed ID: 8339911 [TBL] [Abstract][Full Text] [Related]
12. Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores. Li Y; Li X; Wang D; Shen C; Yang M Mikrochim Acta; 2018 Aug; 185(9):435. PubMed ID: 30167800 [TBL] [Abstract][Full Text] [Related]
13. New high-performance liquid chromatographic method for the detection of picolinic acid in biological fluids. Dazzi C; Candiano G; Massazza S; Ponzetto A; Varesio L J Chromatogr B Biomed Sci Appl; 2001 Feb; 751(1):61-8. PubMed ID: 11232856 [TBL] [Abstract][Full Text] [Related]
14. Ultraviolet absorption by dipicolinic acid in model systems and bacterial spores. Holsinger VH; Blankenship LC; Pallansch MJ Arch Biochem Biophys; 1967 Mar; 119(1):282-7. PubMed ID: 6059219 [No Abstract] [Full Text] [Related]
15. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chen H; Xie Y; Kirillov AM; Liu L; Yu M; Liu W; Tang Y Chem Commun (Camb); 2015 Mar; 51(24):5036-9. PubMed ID: 25706307 [TBL] [Abstract][Full Text] [Related]
16. Rapid dipicolinic acid extraction from Bacillus spores detected by surface-enhanced Raman spectroscopy. Farquharson S; Gift AD; Maksymiuk P; Inscore FE Appl Spectrosc; 2004 Mar; 58(3):351-4. PubMed ID: 15035719 [No Abstract] [Full Text] [Related]
17. [Studies on the mechanism of biosynthesis and accumulation of dipicolinic acid in spore-forming bacteria. I. Physical and chemical properties of an active fraction catalyzing synthesis of dipicolinic acid from the diketopimelate-NH3 complex]. Kawasaki C; Sakurai J; Kondo M Nihon Saikingaku Zasshi; 1968 Nov; 23(11):772-6. PubMed ID: 4975434 [No Abstract] [Full Text] [Related]
18. POSSIBLE INVOLVEMENT OF SPORANGIAL CYTOPLASM AS A BIOSYNTHETIC SITE IN DIPICOLINIC ACID FORMATION BY BACILLUS SUBTILIS. KONDO M; TAKEDA Y; YONEDA M Biken J; 1964 Dec; 7():153-6. PubMed ID: 14308864 [No Abstract] [Full Text] [Related]
19. Derepression of sporulation and synthesis of mycobacillin and dipicolinic acid by guanosine 3':5'-cyclic monophosphate under conditions of glucose repression in Bacillus subtilis. Majumdar S; Bose SK J Gen Microbiol; 1985 Oct; 131(10):2783-8. PubMed ID: 2999297 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the properties of Bacillus subtilis spores made in liquid or on agar plates. Rose R; Setlow B; Monroe A; Mallozzi M; Driks A; Setlow P J Appl Microbiol; 2007 Sep; 103(3):691-9. PubMed ID: 17714403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]