These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 6795992)

  • 1. Hormones and liver mitochondria: effects of growth hormone and thyroxine on respiration, fluorescence of 1-anilino-8-naphthalene sulfonate and enzyme activities of complex I and II of submitochondrial particles.
    Maddaiah VT; Clejan S; Palekar AG; Collipp PJ
    Arch Biochem Biophys; 1981 Sep; 210(2):666-77. PubMed ID: 6795992
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of iron deficiency on succinate- and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria.
    Ackrell BA; Maguire JJ; Dallman PR; Kearney EB
    J Biol Chem; 1984 Aug; 259(16):10053-9. PubMed ID: 6432778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA; Arbour NC; Upham B; Church DF
    Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer by redox proteins in mitochondria.
    Papa S; Lorusso M; Guerrieri F
    Prog Clin Biol Res; 1982; 102 Pt B():423-37. PubMed ID: 6298803
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of growth hormone and thyroxine on thermotropic effects of respiration and 1-anilino-8-naphthalene sulfonate fluorescence and on lipid composition of cardiac membranes.
    Clejan S; Jonas E; Collipp PJ; Fugler L; Maddaiah VT
    Biochim Biophys Acta; 1981 Dec; 678(2):250-6. PubMed ID: 7317451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and properties of a mitochondrial protein that converts succinate dehydrogenase into succinate-ubiquinone oxidoreductase.
    Yu CA; Yu L
    Biochemistry; 1980 Jul; 19(15):3579-85. PubMed ID: 6250572
    [No Abstract]   [Full Text] [Related]  

  • 7. A comparison of the respiratory chain in particles from Paracoccus denitrificans and bovine heart mitochondria by EPR spectroscopy.
    Albracht SP; van Verseveld HW; Hagen WR; Kalkman ML
    Biochim Biophys Acta; 1980 Dec; 593(2):173-86. PubMed ID: 6263319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of endogenous ubiquinone on the interaction of exogenous Ubiquinone-1 with the respiratory chain of bovine heart mitochondria.
    Cabrini L; Landi L; Pasquali P; Lenaz G
    Arch Biochem Biophys; 1981 Apr; 208(1):11-9. PubMed ID: 6789771
    [No Abstract]   [Full Text] [Related]  

  • 11. New insights, ideas and unanswered questions concerning iron-sulfur clusters in mitochondria.
    Beinert H; Albracht SP
    Biochim Biophys Acta; 1982 Dec; 683(3-4):245-77. PubMed ID: 6297553
    [No Abstract]   [Full Text] [Related]  

  • 12. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines?
    Krueger MJ; Tan AK; Ackrell BA; Singer TP
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Menadione- (2-methyl-1,4-naphthoquinone-) dependent enzymatic redox cycling and calcium release by mitochondria.
    Frei B; Winterhalter KH; Richter C
    Biochemistry; 1986 Jul; 25(15):4438-43. PubMed ID: 3092856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective inhibition of mitochondrial NADH-ubiquinone reductase (Complex I) by an alkyl polyoxyethylene ether.
    Suzuki H; Wakai M; Ozawa T
    Biochem Int; 1986 Aug; 13(2):351-7. PubMed ID: 3094534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase.
    Kotlyar AB; Vinogradov AD
    Biochim Biophys Acta; 1990 Aug; 1019(2):151-8. PubMed ID: 2119805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic indication for multiple sites of ubiquinol-1 interaction in ubiquinol-cytochrome c reductase in bovine heart mitochondria.
    Esposti MD; Lenaz G
    Arch Biochem Biophys; 1982 Jul; 216(2):727-35. PubMed ID: 6287942
    [No Abstract]   [Full Text] [Related]  

  • 18. [Inhibition of H2O2 and O2-. generation in the respiratory chain, treated with 2,3-dimercaptopropanol].
    Ksenzenko MIu; Konstantinov AA; Tikhonov AN; Ruuge EK
    Biokhimiia; 1982 Sep; 47(9):1577-9. PubMed ID: 6291643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of a ferricyanide-reactive site of cytochrome b-c1 complex, possibly of cytochrome b or ubisemiquinone, at the outer face of submitochondrial particles.
    Kunz WS; Konstantinov A; Tsofina L; Liberman EA
    FEBS Lett; 1984 Jul; 172(2):261-6. PubMed ID: 6086391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of [3H]NoHOQnO binding to purified complex III.
    Riccio P; Bobba A; Quagliariello E
    FEBS Lett; 1982 Jan; 137(2):222-6. PubMed ID: 6277692
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.