These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 6796042)

  • 1. Inactivation of aspartyl proteinases by butane-2,3-dione. Modification of tryptophan and tyrosine residues and evidence against reaction of arginine residues.
    Gripon JC; Hofmann T
    Biochem J; 1981 Jan; 193(1):55-65. PubMed ID: 6796042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-terminal amino acid sequences of acid proteases: acid proteases from Penicillium roqueforti and Rhizopus chinensis and alignment with penicillopepsin and mammalian proteases.
    Gripon JC; Rhee SH; Hofmann T
    Can J Biochem; 1977 May; 55(5):504-6. PubMed ID: 328116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pH on the activities of penicillopepsin and Rhizopus pepsin and a proposal for the productive substrate binding mode in penicillopepsin.
    Hofmann T; Hodges RS; James MN
    Biochemistry; 1984 Feb; 23(4):635-43. PubMed ID: 6424704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new chromophoric substrate for penicillopepsin and other fungal aspartic proteinases.
    Hofmann T; Hodges RS
    Biochem J; 1982 Jun; 203(3):603-10. PubMed ID: 7052062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of functional arginine residues in purified bovine testicular hyaluronidase with butane-2, 3-dione.
    Gacesa P; Savitsky MJ; Dodgson KS; Olavesen AH
    Biochim Biophys Acta; 1981 Oct; 661(2):205-12. PubMed ID: 6794626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of amino acid arginine residues of bacterial formate dehydrogenase].
    Tishkov VI; Popov VO; Egorov AM
    Biokhimiia; 1980 Feb; 45(2):317-24. PubMed ID: 7388072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational flexibility in the active sites of aspartyl proteinases revealed by a pepstatin fragment binding to penicillopepsin.
    James MN; Sielecki A; Salituro F; Rich DH; Hofmann T
    Proc Natl Acad Sci U S A; 1982 Oct; 79(20):6137-41. PubMed ID: 6755464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of E. coli L-Asparaginase by reaction with 2,3-butanedione. Chemical modification of arginine and histidine residues.
    Petz D; Löffler HG; Schneider F
    Z Naturforsch C Biosci; 1979; 34(9-10):742-6. PubMed ID: 160698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for an active site arginine in UDP-glucuronyltransferase.
    Zakim D; Hochman Y; Kenney WC
    J Biol Chem; 1983 May; 258(10):6430-4. PubMed ID: 6406480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents.
    Jackson DG; Hersh LB
    J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate.
    Hemmilä IA; Mäntsälä PI
    Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships in heparin cofactor II: chemical modification of arginine and tryptophan and demonstration of a two-domain structure.
    Church FC; Villanueva GB; Griffith MJ
    Arch Biochem Biophys; 1986 Apr; 246(1):175-84. PubMed ID: 3754413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,3-butanedione as a photosensitizing agent: application to alpha-amino acids and alpha-chymotrypsin.
    Fliss H; Viswanatha T
    Can J Biochem; 1979 Nov; 57(11):1267-72. PubMed ID: 540238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penicillopepsin from Penicillium janthinellum crystal structure at 2.8 A and sequence homology with porcine pepsin.
    Hsu IN; Delbaere LT; James MN; Hofmann T
    Nature; 1977 Mar; 266(5598):140-5. PubMed ID: 323722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for an essential arginyl residue in bovine milk gamma-glutamyltransferase.
    Fushiki T; Iwami K; Yasumoto K; Iwai K
    J Biochem; 1983 Mar; 93(3):795-800. PubMed ID: 6135694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inactivation of penicillopepsin with 1,2-epoxy-3-(p-nitrophenoxy) propane, an active-site directed reagent.
    Mains G; Hofmann T
    Can J Biochem; 1974 Nov; 52(11):1018-23. PubMed ID: 4609580
    [No Abstract]   [Full Text] [Related]  

  • 18. Inactivation of Penicillium roqueforti acid protease by specific pepsin inhibitors.
    Gripon JC
    Biochimie; 1976; 58(6):747-9. PubMed ID: 782567
    [No Abstract]   [Full Text] [Related]  

  • 19. Chemical modifications of D-amino acid oxidase. Evidence for active site histidine, tyrosine, and arginine residues.
    Nishino T; Massey V; Williams CH
    J Biol Chem; 1980 Apr; 255(8):3610-6. PubMed ID: 6102567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis.
    Simões I; Faro R; Bur D; Kay J; Faro C
    FEBS J; 2011 Sep; 278(17):3177-86. PubMed ID: 21749650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.