BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6796049)

  • 1. Identification of "buried" lysine residues in two variants of chloramphenicol acetyltransferase specified by R-factors.
    Packman LC; Shaw WV
    Biochem J; 1981 Feb; 193(2):525-39. PubMed ID: 6796049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of naturally occurring hybrid variants of chloramphenicol acetyltransferase to investigate subunit contacts.
    Packman LC; Shaw WV
    Biochem J; 1981 Feb; 193(2):541-52. PubMed ID: 7030311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intramolecular ionic interactions of lysine residues and a possible folding domain in fructose diphosphate aldolase.
    Lambert JM; Perham RN; Coggins JR
    Biochem J; 1977 Jan; 161(1):63-71. PubMed ID: 851425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloramphenicol acetyltransferase: enzymology and molecular biology.
    Shaw WV
    CRC Crit Rev Biochem; 1983; 14(1):1-46. PubMed ID: 6340955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and comparison of chloramphenicol acetyltransferase variants.
    Zaidenzaig Y; Fitton JE; Packman LC; Shaw WV
    Eur J Biochem; 1979 Oct; 100(2):609-18. PubMed ID: 116849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding.
    Bennett AD; Shaw WV
    Biochem J; 1983 Oct; 215(1):29-38. PubMed ID: 6354181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloramphenicol binding site of an fi- R-factor-specified variant of chloramphenicol acetyltransferase.
    Nitzan Y; Gozhansky S
    Arch Biochem Biophys; 1980 Apr; 201(1):115-20. PubMed ID: 6994649
    [No Abstract]   [Full Text] [Related]  

  • 8. Folding domains and intramolecular ionic interactions of lysine residues in glyceraldehyde 3-phosphate dehydrogenase.
    Lambert JM; Perham RN
    Biochem J; 1977 Jan; 161(1):49-62. PubMed ID: 851424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary structure of a chloramphenicol acetyltransferase specified by R plasmids.
    Shaw WV; Packman LC; Burleigh BD; Dell A; Morris HR; Hartley BS
    Nature; 1979 Dec 20-27; 282(5741):870-2. PubMed ID: 390404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybridization of variants of chloramphenicol acetyltransferase specified by fi + and fi - R factors.
    Shaw WV; Sands LC; Datta N
    Proc Natl Acad Sci U S A; 1972 Oct; 69(10):3049-53. PubMed ID: 4628098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The reaction of citraconic anhydride with bovine alpha-crystallin lysine residues. Surface probing and dissociation-reassociation studies.
    Bindels JG; Misdom LW; Hoenders HJ
    Biochim Biophys Acta; 1985 Apr; 828(3):255-60. PubMed ID: 3921054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the enzymatic inactivation of chloramphenicol by highly purified chloramphenicol acetyltransferase.
    Thibault G; Guitard M; Daigneault R
    Biochim Biophys Acta; 1980 Aug; 614(2):339-42. PubMed ID: 6996733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational stability of citraconylated ovalbumin.
    Batra PP
    Int J Biochem; 1991; 23(12):1375-84. PubMed ID: 1761147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents.
    Murray IA; Martinez-Suarez JV; Close TJ; Shaw WV
    Biochem J; 1990 Dec; 272(2):505-10. PubMed ID: 2268278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Isolation and purification of the chloramphenicol-acetyltransferase from Y. pestis EV cells with extrachromosomal resistance to the antibiotic by affinity chromatography].
    Korobeĭnik NV; Mishan'kin BN
    Antibiotiki; 1981 Jan; 26(1):28-33. PubMed ID: 6938164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible modification of lysine in beta-lactoglobulin using citraconic anhydride. Effects on the sulfhydryl groups.
    Brinegar AC; Kinsella JE
    Int J Pept Protein Res; 1981 Jul; 18(1):18-25. PubMed ID: 6796534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloramphenicol resistance that does not involve chloramphenicol acetyltransferase encoded by plasmids from gram-negative bacteria.
    Gaffney DF; Cundliffe E; Foster TJ
    J Gen Microbiol; 1981 Jul; 125(1):113-21. PubMed ID: 7038031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide sequence analysis and overexpression of the gene encoding a type III chloramphenicol acetyltransferase.
    Murray IA; Hawkins AR; Keyte JW; Shaw WV
    Biochem J; 1988 May; 252(1):173-9. PubMed ID: 3048245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of chloramphenicol acetyltransferase at 1.75-A resolution.
    Leslie AG; Moody PC; Shaw WV
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4133-7. PubMed ID: 3288984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the lipoate acetyltransferase of Escherichia coli.
    Russell GC; Guest JR
    Proc Biol Sci; 1991 Feb; 243(1307):155-60. PubMed ID: 1676519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.