BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6796061)

  • 1. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Møller IM; Johnston SP; Palmer JM
    Biochem J; 1981 Feb; 194(2):487-95. PubMed ID: 6796061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulation of exogenous NAD(P)H oxidation in spinach (Spinacia oleracea) leaf mitochondria by pH and cations.
    Edman K; Ericson I; Møller IM
    Biochem J; 1985 Dec; 232(2):471-7. PubMed ID: 3937519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding and screening by cations and the effect on exogenous NAD(P)H oxidation in Neurospora crassa mitochondria.
    Møller IM; Schwitzguébel JP; Palmer JM
    Eur J Biochem; 1982 Mar; 123(1):81-8. PubMed ID: 6461553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 9-Aminoacridine as a fluorescent probe of the electrical diffuse layer associated with the membranes of plant mitochondria.
    Møller IM; Chow WS; Palmer JM; Barber J
    Biochem J; 1981 Jan; 193(1):37-46. PubMed ID: 7305932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlortetracycline and the transmembrane potential of the inner membrane of plant mitochondria.
    Møller IM; Kay CJ; Palmer JM
    Biochem J; 1986 Aug; 237(3):765-71. PubMed ID: 3800917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Polyamines on the Oxidation of Exogenous NADH by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria.
    Rugolo M; Antognoni F; Flamigni A; Zannoni D
    Plant Physiol; 1991 Jan; 95(1):157-63. PubMed ID: 16667944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Feb; 7():4. PubMed ID: 16460565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria.
    Møller IM; Palmer JM
    Biochem J; 1981 Jun; 195(3):583-8. PubMed ID: 7316973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of External NAD(P)H by Jerusalem Artichoke (Helianthus tuberosus) Mitochondria : A Kinetic and Inhibitor Study.
    Rugolo M; Zannoni D
    Plant Physiol; 1992 Jul; 99(3):1037-43. PubMed ID: 16668968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stimulation of exogenous NADH oxidation in Jerusalem artichoke mitochondria by screening of charges on the membranes.
    Johnston SP; Møller IM; Palmer JM
    FEBS Lett; 1979 Dec; 108(1):28-32. PubMed ID: 230083
    [No Abstract]   [Full Text] [Related]  

  • 12. Magnesium transport by brain mitochondria: energy requirement and dependence on Ca2+ fluxes.
    Rugolo M; Zoccarato F
    J Neurochem; 1984 Apr; 42(4):1127-30. PubMed ID: 6421999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane potential generation coupled to oxidation of external NADH in liver mitochondria.
    Bodrova ME; Dedukhova VI; Mokhova EN; Skulachev VP
    FEBS Lett; 1998 Sep; 435(2-3):269-74. PubMed ID: 9762923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    Biochem J; 1975 Dec; 152(3):637-45. PubMed ID: 1227506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of NADH oxidation by atractylate in Jerusalem artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    FEBS Lett; 1978 May; 89(1):165-8. PubMed ID: 207566
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effect of bivalent metal ions on enzymatic activity of Ca2+, Mg2+-dependent DNAse from sea urchin Stronglyocentrotus intermedius embryos].
    Menzorova NI; Rasskazov VA
    Biokhimiia; 1980 Mar; 45(3):544-53. PubMed ID: 6769503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of K+-stimulated exogenous NADH oxidation in plant mitochondria.
    Earnshaw MJ
    FEBS Lett; 1975 Nov; 59(1):109-12. PubMed ID: 178538
    [No Abstract]   [Full Text] [Related]  

  • 18. Calcium uptake in skeletal muscle mitochondria. I. The effects of chelating agents on the mitochondria from fatigued rats.
    Tate CA; Bonner HW; Leslie SW
    Eur J Appl Physiol Occup Physiol; 1978 Aug; 39(2):111-6. PubMed ID: 99303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of mitochondrial complex I activity by reversible Ca2+ and NADH mediated superoxide anion dependent inhibition.
    Sadek HA; Szweda PA; Szweda LI
    Biochemistry; 2004 Jul; 43(26):8494-502. PubMed ID: 15222760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Use of Fura-2 Fluorescence to Monitor the Movement of Free Calcium Ions into the Matrix of Plant Mitochondria (Pisum sativum and Helianthus tuberosus).
    Zottini M; Zannoni D
    Plant Physiol; 1993 Jun; 102(2):573-578. PubMed ID: 12231846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.