These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 6796557)

  • 1. Evidence against a general role of NADP-glycohydrolase in differentiation of Streptomyces griseus.
    Gräfe U; Eritt I; Fleck WF
    J Antibiot (Tokyo); 1981 Oct; 34(10):1385-7. PubMed ID: 6796557
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of short-chain alcohols on production of NADP-glycohydrolase by Streptomyces griseus.
    Gräfe U
    Z Allg Mikrobiol; 1982; 22(8):591-4. PubMed ID: 6819724
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemical characteristics of non-streptomycin-producing mutants of Streptomyces griseus. I. Role of NAD (P)-glycohydrolase in cell differentiation.
    Gräfe U; Roth M; Christner A; Bormann EJ
    Z Allg Mikrobiol; 1981; 21(9):633-42. PubMed ID: 6801874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD(P) NUCLEOSIDASE OF STREPTOMYCES GRISEUS.
    WANG SL; SHEN SC
    Sci Sin; 1964 Aug; 13():1221-33. PubMed ID: 14206659
    [No Abstract]   [Full Text] [Related]  

  • 5. Control by phospho-adenosinediphospho-ribose of NADP-dependent isocitrate dehydrogenase and 6-phosphogluconate dehydrogenase in Streptomyces griseus.
    Gräfe U; Bormann EJ; Truckenbrodt G
    Z Allg Mikrobiol; 1980; 20(10):607-11. PubMed ID: 6784352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of a role for NAD+-glycohydrolase and ADP-ribosyltransferase in growth and differentiation of Streptomyces griseus NRRL B-2682: inhibition by m-aminophenylboronic acid.
    Penyige A; Deák E; Kálmánczhelyi A; Barabás G
    Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():1937-44. PubMed ID: 8800814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pleiotropic effects of a butyrolactone-type autoregulator on mutants of Streptomyces griseus blocked in cytodifferentiation.
    Gräfe U; Reinhardt G; Krebs D; Eritt I; Fleck WF
    J Gen Microbiol; 1984 May; 130(5):1237-45. PubMed ID: 6432945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification by genetic changes of the pleiotropic interference of butyrolactone-type autoregulators with differentiation of Streptomyces griseus.
    Gräfe U; Eritt I; Reinhardt G; Krebs D; Fleck WF
    Z Allg Mikrobiol; 1984; 24(8):515-23. PubMed ID: 6438925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance liquid chromatography for assaying NAD glycohydrolase from Neurospora crassa conidia.
    Pietta P; Pace M; Menegus F
    Anal Biochem; 1983 Jun; 131(2):533-7. PubMed ID: 6225349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study on the NAD glycohydrolase of the maternal and neonatal erythrocytes.
    Suh BH; Lee JH; Cho YH
    Asia Oceania J Obstet Gynaecol; 1985 Jun; 11(2):169-76. PubMed ID: 2931064
    [No Abstract]   [Full Text] [Related]  

  • 11. NAD+-GLYCOHYDROLASE OF THYROID HOMOGENATES.
    MAAYAN ML
    Nature; 1964 Dec; 204():1169-70. PubMed ID: 14264372
    [No Abstract]   [Full Text] [Related]  

  • 12. Induction of streptomycin-inactivating enzyme by A-factor in Streptomyces griseus.
    Hara O; Beppu T
    J Antibiot (Tokyo); 1982 Sep; 35(9):1208-15. PubMed ID: 6292150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of ox brain nicotinamide adenine dinucleotide (phosphate) glycohydrolase.
    Iyer PK; Daryanani GR; Jagannathan V
    Indian J Biochem Biophys; 1976 Sep; 13(3):197-201. PubMed ID: 13035
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetic properties and physiological regulation of NAD glycohydrolase.
    Ricci C; Pallini V; Martelli P; Bovalini L
    Ital J Biochem; 1986; 35(5):339-46. PubMed ID: 2948937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methemoglobin reductase variability as related to NAD glycohydrolase activity.
    Scarrà GL; Ghio R; Ajmar F; Bruzzone G; Salvidio E
    Arch Biochem Biophys; 1974 Oct; 164(2):286-91. PubMed ID: 4156631
    [No Abstract]   [Full Text] [Related]  

  • 16. [NADP+ catabolic enzymes in differentiating rabbit erythroid cells].
    Nemchinskaia VL; Mozhenok TP; Braun AD
    Tsitologiia; 1981 Apr; 23(4):465-8. PubMed ID: 6114581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NAD glycohydrolase in carp liver.
    RACZYNSKA-BOJANOWSKA K; GASIOROWSKA I
    Acta Biochim Pol; 1963; 10():117-23. PubMed ID: 13972939
    [No Abstract]   [Full Text] [Related]  

  • 18. [Changes in NADP-glycohydrolase activity in the process of Actinomyces streptomycini development].
    Voronina OI; Novikova GV; Khokhlov AS
    Izv Akad Nauk SSSR Biol; 1982; (4):620-4. PubMed ID: 7119268
    [No Abstract]   [Full Text] [Related]  

  • 19. [Presence of NADP-glycohydrolase and NADP-pyrophosphatase activity in the human palatine tonsil and their role in the inactivation of glucose-6-phosphate dehydrogenase].
    Pallestrini EA; Lorenzoni I
    Minerva Otorinolaringol; 1968; 18(5):221-7. PubMed ID: 4388680
    [No Abstract]   [Full Text] [Related]  

  • 20. Proteolytic activity of subcellular fractions from Streptomyces griseus no. 45-H.
    Valu G; Szabó G
    Acta Biol Acad Sci Hung; 1976; 27(2-3):171-5. PubMed ID: 193328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.