BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6796577)

  • 1. The role of cations in avian liver phosphoenolpyruvate carboxykinase catalysis. Activation and regulation.
    Lee MH; Hebda CA; Nowak T
    J Biol Chem; 1981 Dec; 256(24):12793-801. PubMed ID: 6796577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoenolpyruvate carboxykinase (guanosine 5'-triphosphate) from rat liver cytosol. Divalent cation involvement in the decarboxylation reactions.
    Colombo G; Lardy HA
    Biochemistry; 1981 May; 20(10):2758-67. PubMed ID: 6788071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The purification, characterization, and activation of phosphoenolpyruvate carboxykinase from chicken liver mitochondria.
    Hebda CA; Nowak T
    J Biol Chem; 1982 May; 257(10):5503-14. PubMed ID: 7068603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase.
    Noce PS; Utter MF
    J Biol Chem; 1975 Dec; 250(23):9099-105. PubMed ID: 392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiological role of Mn2+ in the regulation of cytosolic phosphoenolpyruvate carboxykinase from rat liver is unlikely.
    Maggini S; Stoecklin-Tschan FB; Mörikofer-Zwez S; Walter P
    Biochem J; 1993 Jun; 292 ( Pt 2)(Pt 2):365-70. PubMed ID: 8503871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and properties of mitochondrial phosphoenolpyruvate carboxykinase from liver of Squalus acanthias.
    Johnson WV; Kemp JR; Anderson PM
    Arch Biochem Biophys; 1990 Aug; 280(2):376-82. PubMed ID: 2369129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the manganese and iron activation of the phosphoenolpyruvate carboxykinase isozymes from rabbit.
    Lambeth DO; Muhonen WW; Jacoby GH; Ray PD
    Biochim Biophys Acta; 1992 Dec; 1156(1):85-91. PubMed ID: 1472544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of phosphoenolpyruvate carboxykinase from the parasitic helminth Ascaris suum.
    Rohrer SP; Saz HJ; Nowak T
    J Biol Chem; 1986 Oct; 261(28):13049-55. PubMed ID: 3759946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Mn2+ on the exchange reaction of phosphoenolpyruvate carboxykinase in the presence of high concentrations of Mg2+.
    Satoh Y
    Biochim Biophys Acta; 1986 Aug; 872(3):177-82. PubMed ID: 3730399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase.
    Crow VL; Pritchard GG
    Biochim Biophys Acta; 1977 Mar; 481(1):105-14. PubMed ID: 14688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state kinetic studies of the metal ion-dependent decarboxylation of oxalacetate catalyzed by pyruvate kinase.
    Kiick DM; Cleland WW
    Arch Biochem Biophys; 1989 May; 270(2):647-54. PubMed ID: 2705784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+.
    Conyers GB; Wu G; Bessman MJ; Mildvan AS
    Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of divalent cations on bovine spermatozoal adenylate cyclase activity.
    Braun T
    J Cyclic Nucleotide Res; 1975; 1(6):271-81. PubMed ID: 1225940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of the interaction of substrates, Mn2+, and Mg2+ with the Mn2+-sensitive and -insensitive forms of phosphoenolpyruvate carboxykinase.
    Schramm VL; Fullin FA; Zimmerman MD
    J Biol Chem; 1981 Nov; 256(21):10803-8. PubMed ID: 7287735
    [No Abstract]   [Full Text] [Related]  

  • 15. Purification and characterization of phospho enol pyruvate carboxykinase from Trypanosoma brucei.
    Hunt M; Köhler P
    Biochim Biophys Acta; 1995 May; 1249(1):15-22. PubMed ID: 7766679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A histidine residue at the active site of avian liver phosphoenolpyruvate carboxykinase.
    Cheng KC; Nowak T
    J Biol Chem; 1989 Nov; 264(33):19666-76. PubMed ID: 2584187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophosphorylation of phosphorylase kinase. Divalent metal cation and nucleotide dependency.
    Hallenbeck PC; Walsh DA
    J Biol Chem; 1983 Nov; 258(22):13493-501. PubMed ID: 6643437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of anions and divalent metal ions with phosphoenolpyruvate carboxykinase.
    Bentle LA; Lardy HA
    J Biol Chem; 1976 May; 251(10):2916-21. PubMed ID: 1270433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.