These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6797714)

  • 1. Inorganic cation transport and the effects on C4 dicarboxylate transport in Bacillus subtilis.
    Kay WW; Ghei OK
    Can J Microbiol; 1981 Nov; 27(11):1194-201. PubMed ID: 6797714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinate transport in Bacillus subtilis. Dependence on inorganic anions.
    Ghei OK; Kay WW
    Biochim Biophys Acta; 1975 Sep; 401(3):440-57. PubMed ID: 810162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of monovalent and divalent cations on the activity of Streptococcus lactis C10 pyruvate kinase.
    Crow VL; Pritchard GG
    Biochim Biophys Acta; 1977 Mar; 481(1):105-14. PubMed ID: 14688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remarkable affinity and selectivity for Cs+ and uranyl (UO22+) binding to the manganese site of the apo-water oxidation complex of photosystem II.
    Ananyev GM; Murphy A; Abe Y; Dismukes GC
    Biochemistry; 1999 Jun; 38(22):7200-9. PubMed ID: 10353831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein.
    Yamaguchi A; Udagawa T; Sawai T
    J Biol Chem; 1990 Mar; 265(9):4809-13. PubMed ID: 2156856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli.
    van Veen HW; Abee T; Kortstee GJ; Konings WN; Zehnder AJ
    Biochemistry; 1994 Feb; 33(7):1766-70. PubMed ID: 8110778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport.
    Laddaga RA; Bessen R; Silver S
    J Bacteriol; 1985 Jun; 162(3):1106-10. PubMed ID: 3922941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae: specificity and kinetics.
    Gadd GM; Laurence OS
    Microbiology (Reading); 1996 May; 142 ( Pt 5)():1159-1167. PubMed ID: 8704957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel interactions of cations with dihydropyridine calcium antagonist binding sites in brain.
    Bolger GT; Skolnick P
    Br J Pharmacol; 1986 Aug; 88(4):857-66. PubMed ID: 3017494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium transport in murine S49 lymphoma cells: pharmacology and divalent cation selectivity.
    Grubbs RD; Wetherill CA; Kutschke K; Maguire ME
    Am J Physiol; 1985 Jan; 248(1 Pt 1):C51-7. PubMed ID: 3966543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane cation movements during infection of Lactobacillus lactis by bacteriophage LL-H.
    Alatossava T; Jütte H; Seiler H
    J Gen Virol; 1987 Jun; 68 ( Pt 6)():1525-32. PubMed ID: 3585280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+.
    Conyers GB; Wu G; Bessman MJ; Mildvan AS
    Biochemistry; 2000 Mar; 39(9):2347-54. PubMed ID: 10694402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin.
    Masumoto A; Hemler ME
    J Cell Biol; 1993 Oct; 123(1):245-53. PubMed ID: 7691827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Succinate transport by free-living forms of Rhizobium japonicum.
    McAllister CF; Lepo JE
    J Bacteriol; 1983 Mar; 153(3):1155-62. PubMed ID: 6402487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionophore 4-BrA23187 transports Zn2+ and Mn2+ with high selectivity over Ca2+.
    Erdahl WL; Chapman CJ; Wang E; Taylor RW; Pfeiffer DR
    Biochemistry; 1996 Oct; 35(43):13817-25. PubMed ID: 8901524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular divalent and trivalent cation effects on sodium current kinetics in single canine cardiac Purkinje cells.
    Hanck DA; Sheets MF
    J Physiol; 1992 Aug; 454():267-98. PubMed ID: 1335501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology.
    Park MH; Wong BB; Lusk JE
    J Bacteriol; 1976 Jun; 126(3):1096-103. PubMed ID: 780341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substitution studies of the second divalent metal cation requirement of protein tyrosine kinase CSK.
    Sun G; Budde RJ
    Biochemistry; 1999 Apr; 38(17):5659-65. PubMed ID: 10220355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.