BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6798019)

  • 1. Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH.
    Kallas T; Castenholz RW
    J Bacteriol; 1982 Jan; 149(1):229-36. PubMed ID: 6798019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid transient growth at low pH in the cyanobacterium Synechococcus sp.
    Kallas T; Castenholz RW
    J Bacteriol; 1982 Jan; 149(1):237-46. PubMed ID: 6798020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P NMR identification of metabolites and pH determination in the cyanobacterium Synechocystis sp. PCC 6308.
    Lawrence BA; Polse J; DePina A; Allen MM; Kolodny NH
    Curr Microbiol; 1997 May; 34(5):280-3. PubMed ID: 9099627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus-31 nuclear magnetic resonance analysis of internal pH during photosynthesis in the cyanobacterium Synechococcus.
    Kallas T; Dahlquist FW
    Biochemistry; 1981 Sep; 20(20):5900-7. PubMed ID: 6794618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 31P-NMR study of the cross-membrane pH gradient induced by ATP hydrolysis in mitochondria.
    Ogawa S; Shen C; Castillo CL
    Biochim Biophys Acta; 1980 Apr; 590(2):159-69. PubMed ID: 7370234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between cytosolic [ATP], [ATP]/[ADP] and ionic fluxes in the perfused rat heart: A 31P, 23Na and 87Rb NMR study.
    Stewart LC; Deslauriers R; Kupriyanov VV
    J Mol Cell Cardiol; 1994 Oct; 26(10):1377-92. PubMed ID: 7869398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination.
    Dietz KJ; Heber U; Mimura T
    Biochim Biophys Acta; 1998 Aug; 1373(1):87-92. PubMed ID: 9733929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002.
    Shen G; Canniffe DP; Ho MY; Kurashov V; van der Est A; Golbeck JH; Bryant DA
    Photosynth Res; 2019 Apr; 140(1):77-92. PubMed ID: 30607859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of 3'-O-(1-naphthoyl)adenosine 5'-diphosphate, a fluorescent adenosine 5'-diphosphate analogue, with the adenosine 5'-diphosphate/adenosine 5'-triphosphate carrier protein in the mitochondrial membrane.
    Block MR; Lauquin GJ; Vignais PV
    Biochemistry; 1982 Oct; 21(22):5451-7. PubMed ID: 7171567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adverse effects of reverse triiodothyronine on cellular metabolism as assessed by 1H and 31P NMR spectroscopy.
    Okamoto R; Leibfritz D
    Res Exp Med (Berl); 1997; 197(4):211-7. PubMed ID: 9440139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive measurement of metabolites and tissue pH in the kidney by 31P nuclear magnetic resonance.
    Sehr PA; Bore PJ; Papatheofanis J; Radda GK
    Br J Exp Pathol; 1979 Dec; 60(6):632-41. PubMed ID: 44201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles for heme-copper oxidases in extreme high-light and oxidative stress response in the cyanobacterium Synechococcus sp. PCC 7002.
    Nomura CT; Sakamoto T; Bryant DA
    Arch Microbiol; 2006 Jun; 185(6):471-9. PubMed ID: 16775753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in the accumulation of adenylylated nucleotides in heavy-metal-ion-stressed and heat-stressed Synechococcus sp. strain PCC 6301, a cyanobacterium, in light and dark.
    Pálfi Z; Surányi G; Borbély G
    Biochem J; 1991 Jun; 276 ( Pt 2)(Pt 2):487-91. PubMed ID: 1904720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energy requirements of pH homoeostasis define the limits of pH regulation--a model.
    Kugel H; Mayer A; Kirst GO; Leibfritz D
    Biochim Biophys Acta; 1990 Aug; 1054(1):33-40. PubMed ID: 2383600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogenase activity and membrane electrogenesis in the cyanobacterium Plectonema boryanum.
    Hawkesford MJ; Reed RH; Rowell P; Stewart WD
    Eur J Biochem; 1982 Sep; 127(1):63-6. PubMed ID: 6814911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus nuclear magnetic resonance of perfused salivary gland.
    Murakami M; Imai Y; Seo Y; Morimoto T; Shiga K; Watari H
    Biochim Biophys Acta; 1983 Feb; 762(1):19-24. PubMed ID: 6830866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electrochemical proton potential of Bacillus alcalophilus.
    Hoffmann A; Dimroth P
    Eur J Biochem; 1991 Oct; 201(2):467-73. PubMed ID: 1657600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and P(i) in the reconstituted ATP synthase of Escherichia coli.
    D'Alessandro M; Turina P; Melandri BA
    Biochim Biophys Acta; 2011 Jan; 1807(1):130-43. PubMed ID: 20800570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.