These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6798023)

  • 81. Lipid intermediates in the biosynthesis of the linkage unit between teichoic acids and peptidoglycan.
    McArthur HA; Roberts FM; Hancock IC; Baddiley J
    FEBS Lett; 1978 Feb; 86(2):193-200. PubMed ID: 624402
    [No Abstract]   [Full Text] [Related]  

  • 82. The GTPase CpgA is implicated in the deposition of the peptidoglycan sacculus in Bacillus subtilis.
    Absalon C; Hamze K; Blanot D; Frehel C; Carballido-Lopez R; Holland BI; van Heijenoort J; Séror SJ
    J Bacteriol; 2008 May; 190(10):3786-90. PubMed ID: 18344364
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Peptidoglycan Recycling in Gram-Positive Bacteria Is Crucial for Survival in Stationary Phase.
    Borisova M; Gaupp R; Duckworth A; Schneider A; Dalügge D; Mühleck M; Deubel D; Unsleber S; Yu W; Muth G; Bischoff M; Götz F; Mayer C
    mBio; 2016 Oct; 7(5):. PubMed ID: 27729505
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Control of synthesis of wall teichoic acid during balanced growth of Bacillus subtilis W23.
    Cheah SC; Hussey H; Hancock I; Baddiley J
    J Gen Microbiol; 1982 Mar; 128(3):593-9. PubMed ID: 6281365
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Characterization of a Bacillus subtilis thermosensitive teichoic acid-deficient mutant: gene mnaA (yvyH) encodes the UDP-N-acetylglucosamine 2-epimerase.
    Soldo B; Lazarevic V; Pooley HM; Karamata D
    J Bacteriol; 2002 Aug; 184(15):4316-20. PubMed ID: 12107153
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Revised model of calcium and magnesium binding to the bacterial cell wall.
    Thomas KJ; Rice CV
    Biometals; 2014 Dec; 27(6):1361-70. PubMed ID: 25315444
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Role and expression of the Bacillus subtilis rodC operon.
    Wagner PM; Stewart GC
    J Bacteriol; 1991 Jul; 173(14):4341-6. PubMed ID: 1712357
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A balancing act times two: sensing and regulating cell envelope homeostasis in Bacillus subtilis.
    Fritz G; Mascher T
    Mol Microbiol; 2014 Dec; 94(6):1201-7. PubMed ID: 25355628
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Organization of teichoic acid in the cell wall of Bacillus subtilis.
    Birdsell DC; Doyle RJ; Morgenstern M
    J Bacteriol; 1975 Feb; 121(2):726-34. PubMed ID: 803488
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The functions of autolysins in the growth and division of Bacillus subtilis.
    Doyle RJ; Koch AL
    Crit Rev Microbiol; 1987; 15(2):169-222. PubMed ID: 3123142
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation.
    Atrih A; Bacher G; Allmaier G; Williamson MP; Foster SJ
    J Bacteriol; 1999 Jul; 181(13):3956-66. PubMed ID: 10383963
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cell Cycle Machinery in Bacillus subtilis.
    Errington J; Wu LJ
    Subcell Biochem; 2017; 84():67-101. PubMed ID: 28500523
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants.
    Vitković L; Cheung HY; Freese E
    J Bacteriol; 1984 Jan; 157(1):318-20. PubMed ID: 6418720
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Coordinated incorporation of nascent peptidoglycan and teichoic acid into pneumococcal cell walls and conservation of peptidoglycan during growth.
    Tomasz A; McDonnell M; Westphal M; Zanati E
    J Biol Chem; 1975 Jan; 250(1):337-41. PubMed ID: 237892
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Attachment of the main chain to the linkage unit in biosynthesis of teichoic acids.
    McArthur HA; Hancock IC; Baddiley J
    J Bacteriol; 1981 Mar; 145(3):1222-31. PubMed ID: 6782090
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan.
    Muchová K; Wilkinson AJ; Barák I
    FEMS Microbiol Lett; 2011 Dec; 325(1):92-8. PubMed ID: 22092867
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Control of cell length in Bacillus subtilis.
    Sargent MG
    J Bacteriol; 1975 Jul; 123(1):7-19. PubMed ID: 806582
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Cell wall turnover at the hemispherical caps of Bacillus subtilis.
    Fan DP; Beckman BE; Beckman MM
    J Bacteriol; 1974 Mar; 117(3):1330-4. PubMed ID: 4205198
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Knockout of the alanine racemase gene in Lactobacillus plantarum results in septation defects and cell wall perforation.
    Palumbo E; Favier CF; Deghorain M; Cocconcelli PS; Grangette C; Mercenier A; Vaughan EE; Hols P
    FEMS Microbiol Lett; 2004 Apr; 233(1):131-8. PubMed ID: 15043879
    [TBL] [Abstract][Full Text] [Related]  

  • 100. D-amino acids govern stationary phase cell wall remodeling in bacteria.
    Lam H; Oh DC; Cava F; Takacs CN; Clardy J; de Pedro MA; Waldor MK
    Science; 2009 Sep; 325(5947):1552-5. PubMed ID: 19762646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.