These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. L-Arabinose 1-dehydrogenase: a novel enzyme involving in bacterial L-arabinose metabolism. Watanabe S; Kodaki T; Makino K Nucleic Acids Symp Ser (Oxf); 2005; (49):309-10. PubMed ID: 17150757 [TBL] [Abstract][Full Text] [Related]
3. Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism. Watanabe S; Kodaki T; Makino K J Biol Chem; 2006 Feb; 281(5):2612-23. PubMed ID: 16326697 [TBL] [Abstract][Full Text] [Related]
4. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. Sutter JM; Johnsen U; Schönheit P FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28854683 [TBL] [Abstract][Full Text] [Related]
5. Structural insights into the catalytic and substrate recognition mechanisms of bacterial l-arabinose 1-dehydrogenase. Watanabe Y; Iga C; Watanabe Y; Watanabe S FEBS Lett; 2019 Jun; 593(11):1257-1266. PubMed ID: 31058311 [TBL] [Abstract][Full Text] [Related]
6. L-arabonate and D-galactonate production by expressing a versatile sugar dehydrogenase in metabolically engineered Escherichia coli. Liu H; Valdehuesa KN; Ramos KR; Nisola GM; Lee WK; Chung WJ Bioresour Technol; 2014 May; 159():455-9. PubMed ID: 24713235 [TBL] [Abstract][Full Text] [Related]
7. alpha-ketoglutaric semialdehyde dehydrogenase isozymes involved in metabolic pathways of D-glucarate, D-galactarate, and hydroxy-L-proline. Molecular and metabolic convergent evolution. Watanabe S; Yamada M; Ohtsu I; Makino K J Biol Chem; 2007 Mar; 282(9):6685-95. PubMed ID: 17202142 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of L-arabonate dehydratase, L-2-keto-3-deoxyarabonate dehydratase, and L-arabinolactonase involved in an alternative pathway of L-arabinose metabolism. Novel evolutionary insight into sugar metabolism. Watanabe S; Shimada N; Tajima K; Kodaki T; Makino K J Biol Chem; 2006 Nov; 281(44):33521-36. PubMed ID: 16950779 [TBL] [Abstract][Full Text] [Related]
9. Genetic analysis of a novel pathway for D-xylose metabolism in Caulobacter crescentus. Stephens C; Christen B; Fuchs T; Sundaram V; Watanabe K; Jenal U J Bacteriol; 2007 Mar; 189(5):2181-5. PubMed ID: 17172333 [TBL] [Abstract][Full Text] [Related]
10. L-Fucose metabolism in mammals. The conversion of L-fucose to two moles of L-lactate, of L-galactose to L-lactate and glycerate, and of D-arabinose to L-lactate and glycollate. Chan JY; Nwokoro NA; Schachter H J Biol Chem; 1979 Aug; 254(15):7060-8. PubMed ID: 457669 [No Abstract] [Full Text] [Related]
11. Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla. Martinez-Drets G; Del Gallo M; Burpee C; Burris RH J Bacteriol; 1984 Jul; 159(1):80-5. PubMed ID: 6588050 [TBL] [Abstract][Full Text] [Related]
12. A novel alpha-ketoglutaric semialdehyde dehydrogenase: evolutionary insight into an alternative pathway of bacterial L-arabinose metabolism. Watanabe S; Kodaki T; Makino K J Biol Chem; 2006 Sep; 281(39):28876-88. PubMed ID: 16835232 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of bacterial L-arabinose 1-dehydrogenase in complex with L-arabinose and NADP Yoshiwara K; Watanabe S; Watanabe Y Biochem Biophys Res Commun; 2020 Sep; 530(1):203-208. PubMed ID: 32828286 [TBL] [Abstract][Full Text] [Related]
15. Substrate and metabolic promiscuities of d-altronate dehydratase family proteins involved in non-phosphorylative d-arabinose, sugar acid, l-galactose and l-fucose pathways from bacteria. Watanabe S; Fukumori F; Watanabe Y Mol Microbiol; 2019 Jul; 112(1):147-165. PubMed ID: 30985034 [TBL] [Abstract][Full Text] [Related]
16. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae. Aro-Kärkkäinen N; Toivari M; Maaheimo H; Ylilauri M; Pentikäinen OT; Andberg M; Oja M; Penttilä M; Wiebe MG; Ruohonen L; Koivula A Appl Microbiol Biotechnol; 2014 Dec; 98(23):9653-65. PubMed ID: 25236800 [TBL] [Abstract][Full Text] [Related]
17. XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii. Johnsen U; Sutter JM; Schulz AC; Tästensen JB; Schönheit P Environ Microbiol; 2015 May; 17(5):1663-76. PubMed ID: 25141768 [TBL] [Abstract][Full Text] [Related]
18. One-Pot Bioconversion of l-Arabinose to l-Ribulose in an Enzymatic Cascade. Chuaboon L; Wongnate T; Punthong P; Kiattisewee C; Lawan N; Hsu CY; Lin CH; Bornscheuer UT; Chaiyen P Angew Chem Int Ed Engl; 2019 Feb; 58(8):2428-2432. PubMed ID: 30605256 [TBL] [Abstract][Full Text] [Related]
19. The pathway for L-galactonate catabolism in Escherichia coli K-12. Cooper RA FEBS Lett; 1979 Jul; 103(2):216-20. PubMed ID: 381020 [No Abstract] [Full Text] [Related]
20. Production and characterization of L-fucose dehydrogenase from newly isolated Acinetobacter sp. strain SA-134. Ohshiro T; Morita N Prep Biochem Biotechnol; 2014; 44(4):382-91. PubMed ID: 24320238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]