These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 6798444)

  • 41. Step of dichlorvos inhibition in the pathway of aflatoxin biosynthesis.
    Yao RC; Hsieh DP
    Appl Microbiol; 1974 Jul; 28(1):52-7. PubMed ID: 4844267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the polyketide synthase gene (pksL1) required for aflatoxin biosynthesis in Aspergillus parasiticus.
    Feng GH; Leonard TJ
    J Bacteriol; 1995 Nov; 177(21):6246-54. PubMed ID: 7592391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of versicolorin A and its derivatives in aflatoxin biosynthesis.
    Dutton MF; Anderson MS
    Appl Environ Microbiol; 1982 Mar; 43(3):548-51. PubMed ID: 6803669
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of pyridazinone herbicides on growth and aflatoxin release by Aspergillus flavus and Aspergillus parasiticus.
    Bean GA; Southall A
    Appl Environ Microbiol; 1983 Aug; 46(2):503-5. PubMed ID: 6414373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aflatoxin formation and gene expression in response to carbon source media shift in Aspergillus parasiticus.
    Wilkinson JR; Yu J; Abbas HK; Scheffler BE; Kim HS; Nierman WC; Bhatnagar D; Cleveland TE
    Food Addit Contam; 2007 Oct; 24(10):1051-60. PubMed ID: 17886177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of aflatoxins and cyclopiazonic acid.
    Dorner JW; Cole RJ; Diener UL
    Mycopathologia; 1984 Aug; 87(1-2):13-5. PubMed ID: 6436707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of aflJ, a gene required for conversion of pathway intermediates to aflatoxin.
    Meyers DM; Obrian G; Du WL; Bhatnagar D; Payne GA
    Appl Environ Microbiol; 1998 Oct; 64(10):3713-7. PubMed ID: 9758789
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of aflatoxin biosynthesis genes by genetic complementation in an Aspergillus flavus mutant lacking the aflatoxin gene cluster.
    Prieto R; Yousibova GL; Woloshuk CP
    Appl Environ Microbiol; 1996 Oct; 62(10):3567-71. PubMed ID: 8967772
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Winged bean (Psophocarpus tetragonolobus (L.) DC) as a substrate for growth and aflatoxin production by aflatoxigenic strains of Aspergillus spp.
    Bean G; Fernando T
    Mycopathologia; 1986 Jan; 93(1):3-7. PubMed ID: 3083261
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The isolation of mutants of Aspergillus flavus and A.parasiticus with altered aflatoxin producing ability.
    Bennett JW; Goldblatt LA
    Sabouraudia; 1973 Nov; 11(3):235-41. PubMed ID: 4203153
    [No Abstract]   [Full Text] [Related]  

  • 51. Production of sterigmatocystin by some species of the genus Aspergillus and its toxicity to chicken embryos.
    Schroeder HW; Kelton WH
    Appl Microbiol; 1975 Oct; 30(4):589-91. PubMed ID: 811164
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Averufanin is an aflatoxin B1 precursor between averantin and averufin in the biosynthetic pathway.
    McCormick SP; Bhatnagar D; Lee LS
    Appl Environ Microbiol; 1987 Jan; 53(1):14-6. PubMed ID: 3103529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conversion of dihydro-O-methylsterigmatocystin to aflatoxin B2 by Aspergillus parasiticus.
    Cleveland TE
    Arch Environ Contam Toxicol; 1989; 18(3):429-33. PubMed ID: 2730159
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fate of the methyl group during the conversion of sterigmatocystin into O-methylsterigmatocystin and aflatoxin B1 by cell-free preparations of Aspergillus parasiticus.
    Bhatnagar D; Cleveland TE
    Biochimie; 1988 Jun; 70(6):743-7. PubMed ID: 3139090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aflatoxin production by Aspergillus flavus field isolates.
    Gabal MA; Hegazi SA; Hassanin N
    Vet Hum Toxicol; 1994 Dec; 36(6):519-21. PubMed ID: 7900269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosynthesis of aflatoxin. Conversion of norsolorinic acid and other hypothetical intermediates into aflatoxin B1.
    Hsieh DP; Lin MT; Yao RC; Singh R
    J Agric Food Chem; 1976; 24(6):1170-4. PubMed ID: 1002896
    [No Abstract]   [Full Text] [Related]  

  • 57. Biosynthetic relationship among aflatoxins B1, B2, G1, and G2.
    Yabe K; Ando Y; Hamasaki T
    Appl Environ Microbiol; 1988 Aug; 54(8):2101-6. PubMed ID: 3140727
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced diversity and aflatoxigenicity in interspecific hybrids of Aspergillus flavus and Aspergillus parasiticus.
    Olarte RA; Worthington CJ; Horn BW; Moore GG; Singh R; Monacell JT; Dorner JW; Stone EA; Xie DY; Carbone I
    Mol Ecol; 2015 Apr; 24(8):1889-909. PubMed ID: 25773520
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of nanoencapsulated natural bioactive phenolic metabolites on chitosan nanoparticles as aflatoxins inhibitor.
    Mekawey AAI; El-Metwally MM
    J Basic Microbiol; 2019 Jun; 59(6):599-608. PubMed ID: 30900741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Morphological changes in strains of Aspergillus flavus Link ex Fries and Aspergillus parasiticus Speare related with aflatoxin production.
    Torres J; Guarro J; Suarez G; Suñe N; Calvo MA; Ramírez C
    Mycopathologia; 1980 Nov; 72(3):171-80. PubMed ID: 6780911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.