These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 6798970)

  • 1. Interaction of coenzyme M and formaldehyde in methanogenesis.
    Romesser JA; Wolfe RS
    Biochem J; 1981 Sep; 197(3):565-71. PubMed ID: 6798970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium.
    Bobik TA; Olson KD; Noll KM; Wolfe RS
    Biochem Biophys Res Commun; 1987 Dec; 149(2):455-60. PubMed ID: 3122735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of methyl coenzyme M reduction with carbon dioxide activation in extracts of Methanobacterium thermoautotrophicum.
    Romesser JA; Wolfe RS
    J Bacteriol; 1982 Nov; 152(2):840-7. PubMed ID: 6813316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetrahydromethanopterin-dependent methanogenesis from non-physiological C1 donors in Methanobacterium thermoautotrophicum.
    Escalante-Semerena JC; Wolfe RS
    J Bacteriol; 1985 Feb; 161(2):696-701. PubMed ID: 3838170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of tetrahydromethanopterin and cytoplasmic cofactor in methane synthesis.
    Sauer FD; Blackwell BA; Mahadevan S
    Biochem J; 1986 Apr; 235(2):453-8. PubMed ID: 3091008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.
    Bobik TA; Wolfe RS
    Proc Natl Acad Sci U S A; 1988 Jan; 85(1):60-3. PubMed ID: 3124103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formaldehyde oxidation and methanogenesis.
    Escalante-Semerena JC; Wolfe RS
    J Bacteriol; 1984 May; 158(2):721-6. PubMed ID: 6427185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence on membrane components of methanogenesis from methyl-CoM with formaldehyde or molecular hydrogen as electron donors.
    Deppenmeier U; Blaut M; Gottschalk G
    Eur J Biochem; 1989 Dec; 186(1-2):317-23. PubMed ID: 2513188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate.
    Grahame DA; Stadtman TC
    Biochem Biophys Res Commun; 1987 Aug; 147(1):254-8. PubMed ID: 3115259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium.
    Balch WE; Wolfe RS
    J Bacteriol; 1979 Jan; 137(1):264-73. PubMed ID: 33148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of N-7-mercaptoheptanoyl-O-phospho-L-threonine (component B) in the enzymatic reduction of methyl-coenzyme M to methane.
    Ellermann J; Kobelt A; Pfaltz A; Thauer RK
    FEBS Lett; 1987 Aug; 220(2):358-62. PubMed ID: 3111890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyl-coenzyme M, an intermediate in methanogenic dissimilation of C1 compounds by Methanosarcina barkeri.
    Shapiro S; Wolfe RS
    J Bacteriol; 1980 Feb; 141(2):728-34. PubMed ID: 6444945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp.
    Lovley DR; White RH; Ferry JG
    J Bacteriol; 1984 Nov; 160(2):521-5. PubMed ID: 6438056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of coenzyme M (2-mercaptoethanesulfonic acid) and methylcoenzyme M [(2-methylthio)ethanesulfonic acid] in Methanococcus voltae: identification of specific and general uptake systems.
    Dybas M; Konisky J
    J Bacteriol; 1989 Nov; 171(11):5866-71. PubMed ID: 2509421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 7-Mercaptoheptanoylthreonine phosphate functions as component B in ATP-independent methane formation from methyl-CoM with reduced cobalamin as electron donor.
    Ankel-Fuchs D; Böcher R; Thauer RK; Noll KM; Wolfe RS
    FEBS Lett; 1987 Mar; 213(1):123-7. PubMed ID: 3104083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coenzyme M and methylcobalamin in methane biosynthesis: results of model studies.
    Schrauzer GN; Grate JH; Katz RN
    Bioinorg Chem; 1978; 8(1):1-10. PubMed ID: 414787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic pyrophosphate synthesis during methanogenesis from methylcoenzyme M by cell-free extracts of Methanobacterium thermoautotrophicum (strain delta H).
    Keltjens JT; van Erp R; Mooijaart RJ; van der Drift C; Vogels GD
    Eur J Biochem; 1988 Mar; 172(2):471-6. PubMed ID: 2832165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin.
    Ankel-Fuchs D; Thauer RK
    Eur J Biochem; 1986 Apr; 156(1):171-7. PubMed ID: 3082633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane production by the membranous fraction of Methanobacterium thermoautotrophicum.
    Sauer FD; Erfle JD; Mahadevan S
    Biochem J; 1980 Jul; 190(1):177-82. PubMed ID: 6778475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP activation and properties of the methyl coenzyme M reductase system in Methanobacterium thermoautotrophicum.
    Gunsalus RP; Wolfe RS
    J Bacteriol; 1978 Sep; 135(3):851-7. PubMed ID: 29032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.