These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 6799150)

  • 21. Effects of neonatal 6-hydroxydopamine treatment upon morphological organization of the posteromedial barrel subfield in mouse somatosensory cortex.
    Loeb EP; Chang FF; Greenough WT
    Brain Res; 1987 Feb; 403(1):113-20. PubMed ID: 3103861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Locus ceruleus lesion by local 6-hydroxydopamine infusion causes marked and specific destruction of noradrenergic neurons, long-term depletion of norepinephrine and the enzymes that synthesize it, and enhanced dopaminergic mechanisms in the ipsilateral cerebral cortex.
    Harik SI
    J Neurosci; 1984 Mar; 4(3):699-707. PubMed ID: 6142931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of 6-hydroxydopamine induced alteration of the postnatal development of central noradrenaline neurons.
    Jonsson G; Hallman H
    Brain Res Bull; 1982; 9(1-6):635-40. PubMed ID: 6184133
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure.
    Jones L; Fischer I; Levitt P
    Cereb Cortex; 1996; 6(3):431-45. PubMed ID: 8670669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Further indication that distinct dopaminergic subsets project to the rat cerebral cortex: lack of colocalization with neurotensin in the superficial dopaminergic fields of the anterior cingulate, motor, retrosplenial and visual cortices.
    Febvret A; Berger B; Gaspar P; Verney C
    Brain Res; 1991 Apr; 547(1):37-52. PubMed ID: 1907216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overeating after midbrain 6-hydroxydopamine: prevention by central injection of selective catecholamine reuptake blockers.
    Hernandez L; Hoebel BG
    Brain Res; 1982 Aug; 245(2):333-43. PubMed ID: 6812851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differentiation of noradrenergic and dopaminergic nerves in the rat kidney: evidence against significant dopaminergic innervation.
    McGrath BP; Lim AE; Bode K; Willis GL; Smith GC
    Clin Exp Pharmacol Physiol; 1983; 10(5):543-53. PubMed ID: 6416723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regenerative critical periods for locus coeruleus in postnatal rat pups following intracisternal 6-hydroxydopamine: a model of noradrenergic development.
    Schmidt RH; Kasik SA; Bhatnagar RK
    Brain Res; 1980 Jun; 191(1):173-90. PubMed ID: 7378749
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of 6-hydroxydopamine on central noradrenaline neurons during ontogeny.
    Sachs C; Jonsson G
    Brain Res; 1975 Dec; 99(2):277-91. PubMed ID: 1182547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of mianserin and fluoxetine on axonal regeneration of brain catecholamine neurons.
    Nakamura S
    Neuroreport; 1991 Sep; 2(9):525-8. PubMed ID: 1684303
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Desmethylimipramine pretreatment prevents 6-hydroxydopamine induced somatostatin receptor reduction in the rat hippocampus.
    López-Sañudo S; Arilla E
    Regul Pept; 1992 Oct; 41(3):227-36. PubMed ID: 1438990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective lesion of the developing central noradrenergic system: short- and long-term effects and reinnervation by noradrenergic-rich tissue grafts.
    Coradazzi M; Gulino R; Garozzo S; Leanza G
    J Neurochem; 2010 Aug; 114(3):761-71. PubMed ID: 20477936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of dopamine neurons in the regulation of beta-adrenergic receptor sensitivity in rat prefrontal cortex.
    Hervé D; Trovero F; Blanc G; Vezina P; Glowinski J; Tassin JP
    J Neurochem; 1990 Jun; 54(6):1864-9. PubMed ID: 2159976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fetally-induced noradrenergic hyperinnervation of cerebral cortex results in persistent down-regulation of beta-receptors.
    Beaulieu M; Coyle JT
    Brain Res; 1982 Aug; 256(4):491-4. PubMed ID: 6290000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of noradrenergic neurons to the regulation of dopaminergic (D1) receptor denervation supersensitivity in rat prefrontal cortex.
    Tassin JP; Studler JM; Hervé D; Blanc G; Glowinski J
    J Neurochem; 1986 Jan; 46(1):243-8. PubMed ID: 3079614
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of neurotoxins to characterize the rates and subcellular distributions of axonally transported dopamine-beta-hydroxylase, tyrosine hydroxylase and norepinephrine in the rat brain.
    Levin BE
    Brain Res; 1979 May; 168(2):331-50. PubMed ID: 87244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of 6-hydroxydopamine-induced norepinephrine depletion on cerebellar development.
    Lovell KL
    Dev Neurosci; 1982; 5(4):359-68. PubMed ID: 6814890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Timing of 6-hydroxydopamine administration influences its effects on visual cortical plasticity.
    Allen EE; Blakemore LJ; Trombley PQ; Gordon B
    Brain Res; 1987 Mar; 429(1):53-8. PubMed ID: 3105820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Norepinephrine in the interpeduncular nucleus of the rat: normal distribution and the effects of deafferentation.
    Battisti WP; Levin BE; Murray M
    Brain Res; 1987 Aug; 418(2):287-300. PubMed ID: 2890404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impaired growth of the cerebral cortex of rats treated neonatally with 6-hydroxydopamine under different environmental conditions.
    Brenner E; Mirmiran M; Uylings HB; Van der Gugten J
    Neurosci Lett; 1983 Nov; 42(1):13-7. PubMed ID: 6318162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.