These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
661 related articles for article (PubMed ID: 6799221)
1. Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance. Flaherty JT; Weisfeldt ML; Bulkley BH; Gardner TJ; Gott VL; Jacobus WE Circulation; 1982 Mar; 65(3):561-70. PubMed ID: 6799221 [TBL] [Abstract][Full Text] [Related]
2. Protective effects of dimethyl amiloride against postischemic myocardial dysfunction in rabbit hearts: phosphorus 31-nuclear magnetic resonance measurements of intracellular pH and cellular energy. Koike A; Akita T; Hotta Y; Takeya K; Kodama I; Murase M; Abe T; Toyama J J Thorac Cardiovasc Surg; 1996 Sep; 112(3):765-75. PubMed ID: 8800166 [TBL] [Abstract][Full Text] [Related]
3. Optimal hypothermic preservation of arrested myocardium in isolated perfused rabbit hearts: a 31P NMR study. Whitman GJ; Kieval RS; Brown J; Banerjee A; Grosso MA; Harken AH Surgery; 1989 Jan; 105(1):100-8. PubMed ID: 2911797 [TBL] [Abstract][Full Text] [Related]
4. New Na(+)-H+ exchange inhibitor HOE 694 improves postischemic function and high-energy phosphate resynthesis and reduces Ca2+ overload in isolated perfused rabbit heart. Hendrikx M; Mubagwa K; Verdonck F; Overloop K; Van Hecke P; Vanstapel F; Van Lommel A; Verbeken E; Lauweryns J; Flameng W Circulation; 1994 Jun; 89(6):2787-98. PubMed ID: 8205693 [TBL] [Abstract][Full Text] [Related]
5. A 31P-nuclear magnetic resonance study of intermittent warm blood cardioplegia. Tian G; Xiang B; Butler KW; Calafiore AM; Mezzetti A; Salerno TA; Deslauriers R J Thorac Cardiovasc Surg; 1995 Jun; 109(6):1155-63. PubMed ID: 7776680 [TBL] [Abstract][Full Text] [Related]
6. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates. Bernard M; Menasche P; Canioni P; Fontanarava E; Grousset C; Piwnica A; Cozzone P J Thorac Cardiovasc Surg; 1985 Aug; 90(2):235-42. PubMed ID: 2410746 [TBL] [Abstract][Full Text] [Related]
7. Mass spectrometry and phosphorus-31 nuclear magnetic resonance demonstrate additive myocardial protection by potassium cardioplegia and hypothermia during global ischemia. Flaherty JT; Weisfeldt ML; Hollis DP; Schaff HV; Gott VL; Jacobus WE Adv Myocardiol; 1980; 2():487-99. PubMed ID: 6775361 [TBL] [Abstract][Full Text] [Related]
8. Energy metabolism and mechanical recovery after cardioplegia in moderately hypertrophied rats. Smolenski RT; Jayakumar J; Seymour AM; Yacoub MH Mol Cell Biochem; 1998 Mar; 180(1-2):137-43. PubMed ID: 9546640 [TBL] [Abstract][Full Text] [Related]
9. Effects of potassium cardioplegia on high-energy phosphate kinetics during circulatory arrest with deep hypothermia in the newborn piglet heart. Clark BJ; Woodford EJ; Malec EJ; Norwood CR; Pigott JD; Norwood WI J Thorac Cardiovasc Surg; 1991 Feb; 101(2):342-9. PubMed ID: 1992245 [TBL] [Abstract][Full Text] [Related]
10. Importance of metabolic inhibition and cellular pH in mediating preconditioning contractile and metabolic effects in rat hearts. de Albuquerque CP; Gerstenblith G; Weiss RG Circ Res; 1994 Jan; 74(1):139-50. PubMed ID: 8261587 [TBL] [Abstract][Full Text] [Related]
11. Effect of thromboxane A2 synthetase inhibitor on metabolism and contractility in ischemic reperfused rabbit heart. Kawabata H; Ryomoto T; Katori R Angiology; 1997 Aug; 48(8):689-97. PubMed ID: 9269138 [TBL] [Abstract][Full Text] [Related]
12. The effect of high buffer cardioplegia and secondary cardioplegia on cardiac preservation and postischemic functional recovery: a 31P NMR and functional study in Langendorff perfused pig hearts. Tian GH; Mainwood GW; Biro GP; Smith KE; Butler KW; Lawrence D; Deslauriers R Can J Physiol Pharmacol; 1991 Nov; 69(11):1760-8. PubMed ID: 1804520 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of high-energy phosphate metabolism during cardioplegic arrest and reperfusion: a phosphorus-31 nuclear magnetic resonance study. Pernot AC; Ingwall JS; Menasche P; Grousset C; Bercot M; Piwnica A; Fossel ET Circulation; 1983 Jun; 67(6):1296-303. PubMed ID: 6851024 [TBL] [Abstract][Full Text] [Related]
14. Protective effect of amiloride during hypothermic hyperkalemic preservation: a 31P NMR study in isolated pig hearts. Kupriyanov VV; St Jean M; Xiang B; Butler KW; Deslauriers R J Mol Cell Cardiol; 1995 Oct; 27(10):2237-48. PubMed ID: 8576939 [TBL] [Abstract][Full Text] [Related]
17. Does retrograde warm blood cardioplegic perfusion provide better protection of ischemic areas than antegrade warm blood cardioplegic perfusion? A magnetic resonance study in pig hearts. Ye J; Sun J; Hoffenberg EF; Shen J; Yang L; Summers R; Sálerno TA; Deslauriers R J Thorac Cardiovasc Surg; 1999 May; 117(5):994-1003. PubMed ID: 10220695 [TBL] [Abstract][Full Text] [Related]
18. Influence of heat stress on myocardial metabolism and functional recovery after cardioplegic arrest: a 31P N.M.R study. Jayakumar J; Smolenski RT; Gray CC; Goodwin AT; Kalsi K; Amrani M; Yacoub MH Eur J Cardiothorac Surg; 1998 Apr; 13(4):467-74. PubMed ID: 9641347 [TBL] [Abstract][Full Text] [Related]
19. Effect of an endothelin receptor antagonist and an angiotensin converting enzyme inhibitor on metabolism and contraction in the ischemic and reperfused rabbit heart. Kawabata H; Ryomoto T; Ishikawa K Jpn Circ J; 1999 Oct; 63(10):770-4. PubMed ID: 10553919 [TBL] [Abstract][Full Text] [Related]
20. Energy metabolism, intracellular Na+ and contractile function in isolated pig and rat hearts during cardioplegic ischemia and reperfusion: 23Na- and 31P-NMR studies. Kupriyanov VV; Xiang B; Butler KW; St-Jean M; Deslauriers R Basic Res Cardiol; 1995; 90(3):220-33. PubMed ID: 7575375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]